Volumetric rendering and sculpting

using WebGL

Name

T Number

Course

Module

Supervisor

Date Submitted

—

B

e

i

William Tarrant

Tooo

Computing with Games

Development

Final Year Project

Dr R Sheehy

1% May 2014

Abstract

With the introduction of WebGL combined with HTMLS5, feature rich graphical applications
that normally only ever resided on desktop machines are now being made possible in the
web browser. With web browsers being available as cross platform applications as well
being available on mobile devices, the write once, deploy everywhere opportunities are

immense.

In this thesis, we aim to explore the possibilities being opened up by this technology by
tackling the problem of developing a volumetric rendering engine with the goal of using it as
the foundation for a sculpting tool that is accessible by any modern web browser. The
volume rendering techniques used will be based on existing volume rendering theory from
industry experts but with intent of targeting a cross platform environment including all the
main operating systems as well as compatible mobile devices. The purpose of this sculpting
application will be to offer the user the ability to manipulate an object that possesses
volume as well as having clay like features so that it will mimic “real to life” behaviors. This
is an area worth exploring as most modeling applications don’t concern themselves with
volume but only the surface mesh. An excellent motive to investigate this area, is exploring
the usefulness of volumetric properties of a model, as they may be useful such in areas as

3D printing.

Page 2

Contents

L1101 1T] (o =4 V2R 6
N0 N Tl oo [T ot 4 e Yo NSRS 7
2.0 Data ViSUAISAtION c...eeieiiieieeeee et st 10
2.1 OVEIVIEW ..ttt ettt e e s a e e s s b s e e s saba s e e s sab b e e s s b b e e s s rb e e e s eas senan 10
2.2 What is data VisualiSation?cocuiiiiiiiiiiiene e 10
D Yo | - | TP PP PROR 10
2.2.1.1 CONTOUIINE «.uutiiteeeeeeiiiiittee e e e e sttt e eeesssstbtaeeeeessasabbaaeeeessssssbasaeeesssassssstaaeeessssassssnaeeesesnnas 10
2.2.2 Vector field VisualisSatioNncocuiiiiiiiee ettt ettt s 13
2.2.3 TenSOr ViSURISATION ..c.eiiuiiiiiiiieeee ettt 14
O] [T o 1ol U= o Yo [T o T V-SSP 15
3.1 Introduction to VOIUME FENAEIINGeeieeiiee ettt et e e e ae e e e sabe e e e e atee e e ennes 15
3.1.1 Shaded SUrface DiSPlay (SSD) ..eeeeiciiee e eeieee ettt e ettt e e eetee e e eetteeeeetaeeeeearaeeeebeseeeentaeaeaans 16
3.1.2 Maximum Intensity Projection (IMIP).........eeccieecie ettt ettt e saae e saeesnne e 17
I Yo [V Y=l Yo o 1= o T o = PSPPSRt 18

3.2 INdirect VOIUME FENAEIING ...eeeeeiiie ettt et e e bee e e s e e e et tee e s s abee e e esbaeeeennenas 19
3.2.1 Marching Square python implementation........cccccovviiieeii e 20
3.2.2 Marching cube algOrithm.......cco i e e e e e e e 23

3.2 DireCt VOIUME FENAEIINEGuvieeeeee e ettt ee ettt e e e e e ettt e e e e e e e saateeeeeeeessabstaeeeaeeesssnstaseeeesesnnnnnes 25
3.2.1 VOIUME RAY CASTING .uviiiitiiiiiiiiieeciieee e sttt e eett e e s eetie e e e sttt e e s s taeeessateeeesbaeeessnbaeeesansaeessseeeasanes 25

3.3 INAIrECE VS. DIFBCE c.neeeiiiieriiieiie ettt st st st st sttt ettt et e nbeesbe e neesneennes 26
R o A W D E Y = I 4 8 Lot (UL =TS S 27
L Lor o =T OO PP PO 30
B0 WEDBGL. ..ttt b e bt h e sttt et ettt e be e bt e bt e eheeeateehe e s sebee bt enaeas 32
5.1 Introduction and Brief NiSTOrY ... i e e e e e e e e e anes 32
LI A o To Y] o 1T PSPPI 33
VEITEX SNATEN ...ttt ettt sbee s st sare s ab e s bt e n e n e re et 34
PrimMItIVE ASSEMDIY ..ciiiiiiii et e e e et e e e et e e e s abe e e e sbtee e e nbaeeeentaeeeenreas 34
RASTEIIZATION weeiiiiiiiiiiee et 34

e Tod 00 1T 0 Y o F= T [T USSR 35

Per Fragment Operations. i 35

5.3 BrOWS BT SUPPOIT ittt sttt st b ettt sttt b et e bt beeneeeeeeeeeeeeeeaeeaeaees 36

Page 3

Y=o o | Y PP PP PP PPPUPUPPPPR 37

5.5 THREE JS LIDIary ceeeeeeeee ettt ettt e e e e e e ettt te e e e e e s e e aabee e e e e e e s s nataaneaeeesesnsnsanneeesssannnenns 38
(oI O B T=41 =1 B Yol U1 o T o =SSP 40
6.1 INEFOTUCTION ..ottt ettt e s e st e e s abe e sabeesabeeebeeesabeesabeeeneeeanneas 40
6.2 Working with Traditional Modelling toolscciieiiiiiciii e 40
L3 R = o Y T Yo =] | T =8P 43
LI Y 1 o Yo] | 4 o= USSR 44

6.3 VOIUME SCUIPEING . .eeeiii i e s e e e e e s sab e e e e e e senntateeeeeesennnrene oen 46
6.4 Virtual clay MOdEIIINGeeeieieeeee e e e e e e e s e e e e e e e e s s araeeeeeeeeesnnnes 48
7.0 RESEAICH QUUESTIONS .eeieeiiieeiie ettt ettt st ettt et e st e b e e bt e e s me e e s b et e neeesnneesnteesareeesnneesanes 51
O =TT el Y/ =T g oo [o] fo = SRRt 52
1S B0 I 1= 1= PP P P PP PUPUPPPRN 54
0.1 TS PlaN ettt e b e b e b e e sbeesheesane e enree s 54
9.2 Prototype DEVEIOPMENTuuiiiiiii ettt et e e e s e e st e e e e e sesaareeeeeeesesnnananeeeeeeannnes 57

1S B I AT Y =T o PP UTT TP PPP 59
9.4 RISKS ettt e b et h et e s aE e e s b et e b ee e s bt e sabee e beeenareesare sareesnreeeas 60
OO D1V L] o] 0 T=1 o | FS P PSRP 61
FO.D UML ettt ettt et et e b e s b e s bt s he e s ae e st ettt ettt e bt e b e e s saneeane e 61
O O N @ 1R DT ={ -] o P TP 62
10.3 DEVEIOPMENT TOOIS tiiiiiciiee ettt ettt e e et e e e ete e e e s bteeeeebaeeesastaeeesstaeeeenbaneesastaeaesnns 63
O T R o V=YY R AT VA=1 o 1 PO RPPRR 63
10.3.2 QUNIt - http://QUNILIS.COMY ettt ettt e be e be e be e be e ba e baesraens 63
10.3.3 BootStrap - http://getbootStrap.ComM/......ooviiieiiiiiieeeeeeeee et e 63
10.3.4 JetBrains WebSTOrm 7 IDEoociiiieiienieenieeniteniee sttt sttt nree 64
10.3.5 PYthon SimMPIE SEIVET ..ot e e e et e e e e e s s s e aae e e e e e e seaneanees 64
10.3.6 Git SOUMCE CONTIOL ..eiuiiiiiiiieiiie et s e s e sme e s sans 65

10.4 MOCK USEI INtEITACE ... eiieiiie et et ssee e sre e e sneeens 66
11.0 Developing the Volume rendering and sculpting engineccccccveiiiieiiiiiee e 67
11.1 How does the Marching Cube code work in detail?ccueeieciiiiiiieei e 67
11.2 Developing the Volume rendering engine and testing with image stacksccccceeecvveeeennnen. 71
0 R 0 1 o 1T g3 & Ty Y] L= ST 78

11.3 Developing the Sculpting appliCationcovi i 79

I TR 00 I o V< o o] o] 1= o o SR 79

S T I o =T o] [V 4 o o 79

11.3.3 Creating spring joints USiNg HOOK’'S LAWccccuiiiiiiiiii ettt 84

11.4 Application OF the OCIIEE........coc ettt e et e e et e e e s ebte e e e sbae e e sentaeaeeans 85
11.5 Volume sampling and r€NAEIING ...ccccceueiiiiiee et e et e e e e e rrba e e e e e e e e arraaeeeae s 86

0 T 1Y o o] o Y- o] o T PR ST 88
11.5.2 APPFOGCN 2 ettt ettt ettt ettt b e b e be e s be e sbe e she e shtesatesateeateeateenteenteenreen 88
T I Y o] o] o - o] o T TSRS 91
S Y o o] o Y- Tl o T SRR 92

10,6 RESUIES .ottt e st b e s s b e e s bt e s b e e e s nb e e s an e e s b e e s re e e saneesareeen e enes 100
11.6.1 What Worked Well? ...ttt esree e 100
11.6.2 What didn’t WOrk SO WEH?eeeiiieiie ettt 101
11.6.3 What could be tried NEXE?cc.eiiiiiieiieiieee et s 103
11.6.4 Applications of the WOIKccuuviiiiiii e e 103

12.0 Developing for the Web ENVIFONMENToiiiiiie ettt et e e e 105
12.1 Developing With JaVaSCriptuiiiiie et e e e e e e e rnbr e e e e e e e e e nnrnnees 105
12.2 The MOVE 10 TYPESCHIPE coeiii ittt e e e e e e e e s n e ae e e e e e e s sasnbaeeeaeeeeennnrnaaes 107
I VT o VLY o T =T ST 110
12.4 Deployment through GitHUDooiiiiiiii et 112
12.5 Running the project 10CallYuveeeeeii e e e e e 113
13.0 CONCIUSION .ttt sttt e st e b e e smteesare e s be e e meeesmneesaneeenaeenn eens 115
1Y o =Y o Vo 1 SRR 119
L1A. T UML DIQIamS..ccceeiiieiiiiiiiiiiiiieieeieeeeeeeeeeeteeeeeeeeeeaaeeeaeeeaeeeseaesasasesesassssssssssssssssssssssssssasnnnsnnnsnnnnnns 119
14.2 Libraries used in the development for this Thesisccccceviciiiiiiiee e, 127
WWOTKS GO, ...ttt b e bt s bt she e saee st e sab e s bt et e e bt e nbeenbeesre nreenneens 129

Page 5

Terminology

Voxel

Cubic or rectangular element that has a
position in space and contains information
about itself. In simplest terms it is a 3D
pixel.

« Corner

Edge

| Pgsition (x, y,

2D

Two dimensional (X, Y)

3D

Three dimensional (X, Y, Z)

OpenGL

A multi-platform library that facilitates
interaction with the Graphics Processing Unit

OpenGLES

A subset of OpenGL intended for embedded
systems such as mobile phones.

WebGL

Derived from OpenGL ES 2.0 API, WebGL was
created for the purposes of rendering
graphics in a web browser

Ray casting

A means of projecting a line into the model
world and testing for surface intersections

Sculpt

To shape or mould an object

JavaScript

A dynamic scripting language that is part of
and interpreted by web browser.

Canvas

An element added as part of HTML5 that
allows for the dynamic rendering of 2D
graphics

CcT

Computed Tomography — medical imaging
device used by radiology labs to view
internal anatomy. This device operates by
having a rotating gantry which has an X-Ray
emitter at on side while detectors are
located at the opposite side.

MRI

Magnetic Resonance Imaging — medical
imaging device used by radiology labs to
view internal anatomy. The device uses
magnetic fields to temporally alter atoms
and measurements are performed as they
return to original state. MRI uses no ionizing
radiation in contrast to Computed
Tomography scans.

Page 6

1.0 Introduction

In this thesis we aim to demonstrate some of the possibilities being opened since the advent
of WebGL and HTML5. To explore these possibilities, we endeavoured to create a 3D
modelling application that could either be used for creating renderings or game assets. As
modelling applications are not new, with some already being tested as betas for web
deployment such as Clara.io, we aim to put a spin on this by doing something which most
modelling applications don’t do which is encompass volume in there models. Volume
rendering is an interesting topic which has offered many benefits in the field of medicine
but especially now that 3D printing is becoming more and more popular the possibilities of
applying the volume to models makes it a topic worth studying. Combining this theory with
WebGL opens further possibilities of making cross platform environment capable of

developing a community that can collaborate on, or share their creations.

Volume visualisation is a long established technique that concerns itself with the presenting
of empirically sampled data in a more visually appealing manner. This data can be obtained
through the use of imagery produced from medical scanners or that of computed geometric
models i.e. a mathematical formula for a sphere. Computer Tomography (CT) or Magnetic
Resonance Imaging (MRI) scan will produce a series of regularly spaced 2D images; this data
can then be visualized in a 3D form by using a technique known as voxelization. The images
obtained can be stacked on top of each with a space between each image that matches the
space used in the scanning technique to form the basis of a 3D grid. The layers between
these images are then subdivided to form a 2 dimensional grid of cubic or rectangular
elements that are known as voxels. Voxels can be thought as being the equivalent of a 2D
pixel in that it possesses a position and some information about itself (colour) but expanded
to a 3D environment. The information stored by these voxels is usually the combined

information obtained from images with which the particular voxel is in contact with.

Voxels are then stored in a 3D structure commonly referred to as a volume buffer. The
rendering of this volume buffer is what is known as volume visualisation. (Kaufman, Cohen,
& Yagel, 1993, p. 51) This technique has proved useful in the area of diagnosis by allowing

an extra dimension to physicians with whom they can view a patient’s affliction; this issue

Page 7

may not have been so obvious looking at 2D images solely. A case study by Stytz et al,
profiled a patient with uncontrollable seizures and it was only later through the use of 3D
imaging that the cause was revealed. (Stytz, Frieder, & and Frieder, 1991) Volume
visualisation also lends itself to other uses such as representing scientific phenomenon such
as fractals, meteorological data or fire which tends to be voluminous. (Kaufman & Mueller,

2003)

While volume visualisation is primarily concerned with the rasterising of sampled data, such
as those from medical imaging scans, it is important to form a distinction between it and
volume graphics, which is the focus of this thesis. Volume graphics deals with the
“manipulation and rendering of volumetric geometric objects”. With the great advances in
computing technology since the first advent of volume visualisation such as, greater
processing power and larger memory, volume graphics is now finding its way into areas of
computing graphics that has been dominated by surface graphics, where models are
represented by vertices that form a series of triangles. (Kaufman, Cohen, & Yagel, 1993) One
of big areas and benefits volume graphics has to offer over surface graphics is for example,
terrain generation and or for generating cave structures which is always going to be

voluminous in nature. (Cui, Chow, & Zhang, 2011)

Digital sculpting is, in a sense, the digital version of clay sculpting that artists would be
familiar with. It allows for the user to be able to perform a manipulation of a structure in 3D
space. Many products exist on the market; from the more feature rich Mudbox from
AutoDesk to the open source free offering by Blender 3D. (Autodesk, 2013) (Blender
Foundation, 2013) While there is a well-established content pipeline for rendering triangle
based models, volume graphics is beginning to be recognised as being capable of offering
greater geometrical detail when it is required, some commercial packages that currently use
a form of volume graphics include 3D-coat and ZBrush who use a volume sculpting

technology before the model is converted back to a low poly mesh. (Laine & Karras, 2010)

While most sculpting tools available don’t take account of volume, it makes sense when
working in a sculpting environment, that the subject or material should be volumetric in

nature, similar to how an artist would work with clay on a banding wheel, and it is with this

Page 8

the motivation for exploring this type of application is being exposed with the primary aim
being to investigate and present the viability to implement this technique in a volumetric
environment. As well as this, it is intended to make this application as accessible as possible
by being able to deploy across multiple platforms through the use of the web browser and

WebGL technology.

WebGL is a cross-platform, web standard that allows access to the graphics card through a
JavaScript API. It is based on the OpenGL ES 2.0 standard and offers 3D programming
environment without the need of any plugin through most browsers including Google
Chrome, Mozilla Firefox, Safari, Opera and now even Internet Explorer 11. The reason this is
the deployment platform of choice is really because of the potential that WebGL opens up
the way in which games or online demonstrations can be deployed to multiple platforms,

needing only a reasonably modern machine and a compatible web browser. (Khronos, 2013)

Implementing volumetric graphics presents a greater challenge over the traditional polygon
rendering and this will from an important section of this thesis, among them is the
maintaining of a data structure that is required to track the information on each of the
world’s voxels, which, depending on the resolution, can involve quite a large data set and
because the language being used is JavaScript, providing an efficient algorithm may prove to

be more challenging being a lightweight scripting language.

Without rendering, volume graphics would be of little use so part of the investigation is
going to be placed on the choice of rendering techniques that can be employed to transform
the 3 dimensional datasets to a 2D picture that can be displayed on a user’s monitor. Again,
as the choice of deployment (WebGL) has already been chosen, the choice of rendering
technique may be limited depending on the capability of what the latest release of WebGL

has to offer.

Page 9

2.0 Data visualisation

2.1 Overview

This chapter’s aim is to begin to introduce the roles data visualisation has played in various
sectors including those of engineering and scientific.

2.2 What is data visualisation?

There are many situations where data on its own, especially empirical data, can be difficult
to interpret. But by employing a visualisation technique into their studies; it can help
Scientists, Engineers and doctors, with better understanding what their observations mean

by now being able to view their data in multiple dimensions on a screen.

Some examples of data that can benefit from data visualisation include the engineering
sector such as data obtained from site surveys; others can include numerical computations
or the study of fluid dynamics. Other examples include the study of stresses and strains on

a material or even that of weather models.

Next a selection of data visualisation categories, as identified from a paper by Schroeder et
al, will be examined. The selection will include scalar, vector and tensor data. Taking each
one in step, examples will be presented that will demonstrate how various different
algorithms can be applied depending on the data being modelled. (Schroeder & Martin,
2005)

2.2.1 Scalar
Scalar data can be simply thought as being a point in space having a value associated with,

for example (x, y, z, v) where v represents the value. This value can be anything from a
temperature, density or pressure. Discussed next are some techniques which can be

applied to the data to aid in its interpretation will now be discussed.

2.2.1.1 Contouring
Contouring is a great example of visualising data and in the example presented below, data,

taking an example of a site survey where spot heights levels are taken at 10m intervals. The
information depending on the equipment used will store and present the data in single
dimension format i.e. an array. This can prove to be difficult to interpret on its own without

the aid of some form of visualisation. So taking the survey data example, if contouring is

Page 10

introduced by performing bilinear interpolation by picking a value and calculating where it

lies between two data points (if at all) and marking that point.

Below is illustration of how sampled data from a survey can then be converted using the

algorithm F(x) = ¢, where c is the contour value of interest. (Schroeder & Martin, 2005)

0 1 1 3 2
1 3 6 6 3
3 7 9 7 3
2 7 8 6 2
1 2 3 4 3

Figure 1 Sampled data on a regular spaced grid

Figure 2 - Visualising scalar data with MathPlotLib (Hunter, 2007)

Page 11

Contouring will be examined in more detail in the next chapter when the Marching Cube
Algorithm is discussed. It forms an important role when it comes to contouring and

rendering volumetric structures in 3D.

2.2.1.2 Colour mapping
Colour mapping is a visualisation technique where scalar values are mapped to a colour. A

typical use for this could be the study of temperature in fluids dynamics; such a case may be

the flow of heated water through a circulation pump.

Colour mapping works by simply taking a scalar value and matching it to a colour value
stored in a lookup table. This table may be constructed from Red, Green, Blue and

transparency values.

rgbg
rgb,

s;<min, i=0

rgby

s;>max, i=n-1

] s;— min
i=n\ ———————
max— min

S; L] color
[]
[
rgbp_4

Figure 3 - Scalar to Colour mapping (Schroeder & Martin, 2005)

The key to successful colour mapping is to have an effective lookup table that emphasizes
the important features. (Schroeder & Martin, 2005) However in an article by Borland et al,
they cite using a rainbow colour mapping scheme as being misleading and are suggesting it
should be deprecated. The reasons they cite is that it can obscure the results. They present
the scenario that when asked to put colours in order, it is not a cut and dry task. Despite
this when it comes to offering suggestions for an alternative, it comes down to the task in
hand in the data being presented but they remain highly critical of the rainbow spectrum

and wishes that the visualisation community would avoid it. (Borland & Taylor, 2007)

Page 12

W Figure 1 - o IEN|
P00+« BEY

Figure 4 - Colour mapping of an array

2.2.2 Vector field visualisation
Vectors are quantities that represent both direction and magnitude. Having the ability to

visualise this form of data makes them suitable for studying vector fields like weather
systems or fluid dynamics. When plotting vectors, the length of the vector will represent its
magnitude. A scaling factor is usually applied (perhaps based off the vector with the largest
magnitude) to ensure that all the vectors can be displayed in the image. Issues that can rise
from this are how a particular vector will present itself when projected from the 3D world to
a 2D image, so that its true representation is not lost in the projection l.e. scale. (Schroeder

& Martin, 2005)

= Mayavi Scene 1 - oiEw
P EEEEEEZ® B A& S

Figure 5 - Visualisation of a vector field using Mayavi

Page 13

2.2.3 Tensor Visualisation
To analyse the impact stress and strain can have on material, tensors are employed. The

issue with dealing with tensors is that they have the same complexity as matrices. By being
able to visualise tensor data, the understanding of the impacts of loads can be easier to
determine. Stresses and strains are a source of material failure and so by providing a
technique to better understand it means it is providing an important tool that can be used

from medical or engineering standpoint. (Wunsche, 1999)

Figure 6 - Using a cyclical colour map to illustrate the maximum principle stress in a holed material (Wunsche, 1999)

Page 14

3.0 Volume Rendering

3.1 Introduction to volume rendering

The process of three dimensional rendering is a long established technique, having its
origins in the 1970’s, the Mayo clinic being the early pioneers into its research. Its intent
was to solve the problem of information overload which can result from the enormous
amount of data presented by a Computer Tomography (CT) scans. (Calhoun BFA, Kuszyk
MD, Heath PhD, Carley BS, & Fishman MD, 1999)

In the mid 1980’s, now with more advanced technology available at researchers disposal,
research into the area of three dimensional rendering was well underway. Some of the
leading research was coming from both the University of North Carolina and Pixar. Pixar’s
intention was to develop a commercially available medical imaging system. When Pixar
finally released its technology it was considered to being far too advanced for its time as
well as being considerably expensive. (Kurachi, 2011) (Calhoun BFA, Kuszyk MD, Heath PhD,
Carley BS, & Fishman MD, 1999)

To illustrate the potential offered by using 3D rendering of medical imaging, Stytz et al, in
their paper describe a case where having 2D alone wasn’t sufficient in diagnosing the
ailment of a patient when they presented with having uncontrollable seizures. In this case
they were able to piece together the images obtained from MRI scans and combine it with
the results of a PET (Positron Emission Tomography) scan to find the source of the patient’s
issue. The value of this technique of diagnosis did not just end there but was also
instrumental when it came to surgery as the surgeons were able to perform a rehearsal of
the craniotomy and produce images that they could later use in the surgery to help guide

them. (Stytz, Frieder, & and Frieder, 1991)

The process behind 3D rendering of medical imaging scans involves taking a series of
continuous images along an axis, and then stacks each on top of each other to form a
volume. The final step is the filling of the void that exists between the images with a 3D
matrix of voxels. It is the interpretation of these voxels and presenting a 2D rendered

image is the essence of what volume rendering is all about. The research into this area has

Page 15

produced a number of techniques which include Shaded Surface Display, Maximum

Intensity Projection and more recently Volume rendering. (Calhoun BFA, Kuszyk MD, Heath

PhD, Carley BS, & Fishman MD, 1999)

Figure 7 - Simple illustration of stacked images with a matrix of voxels between image slices.

3.1.1 Shaded Surface Display (SSD)

Figure 8 SSD render of a patients left kidney

(Sato PhD, Shiraga MD, Nakajima MD PhD, Tamura PhD, & Kikinis MD, 1998)

This was one of the earliest techniques developed; it worked by abstracting the object of
interest by means of thresholding. Different tissue types were assigned different values, a
high and low attenuation threshold value. In essence this then became a binary operation

in that the area being sampled either contains the tissue or it doesn’t. (Siegel, 2008)

Page 16

The three main steps involved include firstly, the acquiring of the actual image. The second
step is the segmentation as mentioned above, involves thresholding to determine
foreground objects from the background objects. The final step in the process is the
shading procedure an example presented by Magnusson et al discusses the use of Phongs

formula to present realistic 3D effects. (Magnusson, Lenz, & Per-Erik, 1991)

Advances in the area of this rendering method include the marching cube algorithm which is
discussed in more detail later in this chapter, where by including it as an additional process
while still making use of thresholding allows for the creation of a contoured mesh surface.

(Stytz, Frieder, & and Frieder, 1991)

3.1.2 Maximum Intensity Projection (MIP)

Figure 9 MIP render of patients left kidney

(Sato PhD, Shiraga MD, Nakajima MD PhD, Tamura PhD, & Kikinis MD, 1998)
This rendering technique involves taking a line of voxels and determining which voxel has
the maximum intensity. This process of rendering is largely used in the area of angiographic
imaging. The process of voxel intensity evaluation here can work both ways. Evaluating
from the inside of the dataset to the viewer point of view is referred to as forward
transformation. An issue with this method is that multiple voxels can be projected to the
same pixel leading to an obscured image. The alternative to this is to evaluate from the
outside in which is referred to as ray casting. The string of values that are encountered is
interpolated and it is this value which is placed as the pixel value to be displayed on screen.

(Pavone, Luccichenti, & Cademartiri, 2001)

Page 17

displayed
value

.(_

Figure 10 - Maximum Intensity Projection (Calhoun BFA, Kuszyk MD, Heath PhD, Carley BS, & Fishman MD, 1999)

3.1.3 Volume rendering

Figure 11 Volume Rendering of patients left kidney
(Sato PhD, Shiraga MD, Nakajima MD PhD, Tamura PhD, & Kikinis MD, 1998)
While Shaded Surface display and Maximum Intensity Projection have an advantage of
speed, they also possess some trade-offs. SSD only makes use of 10% of the data obtained
from a scan meaning information is lost while MIP lacks perspective without additional
processing due to its nature of projection (Calhoun BFA, Kuszyk MD, Heath PhD, Carley BS, &
Fishman MD, 1999).

Volume rendering, takes the volume data as a whole and sums the contribution made by
each voxel encountered in the make-up of the final 2D rendered image. This does not have
the same disadvantages over the previous mention methods in that no information is lost

nor is there any thresholding taking place (Pavone, Luccichenti, & Cademartiri, 2001).

The next section of the paper is going to look in depth at different volume rendering
techniques with respect to the application of this thesis. The aim will be to present how

these techniques can be applied to the area of representing geometry as oppose to just the

Page 18

processing of medical imaging data. The methods will be split between those which are
indirect and follow the traditional 3D graphics pipeline route and Direct which aims to
render data by sampling directly from the geometry and projecting directly to the 2D frame

buffer i.e. the final rendered image.

3.2 Indirect volume rendering

Surface rendering is a technique that is used to extract isosurface information from volume
data. Early techniques involved using contouring (similar to that discussed in chapter 2) of
the surface, where contours on sequential slices are connected with triangles. However
there were issues with this if there happened to be two or more contours existing on a
single slice which leads to ambiguities. Lorensen and Cline in 1987 proposed a new method
called the Marching Cube algorithm. The basic premise is that it treats the world it is
rendering as 3D grid. Each cell (commonly referred to as a voxel) is examined
independently. Each vertex on this cell is considered whether inside or outside and based
on this; it determines the topological state of that cell. There are 256 possible topological
states, 8 vertices, each having two possible states (28 = 256), but this is reduced to 14 due

to symmetry (Lorensen & Cline, 1987)

To help in better understand the Marching cube algorithm, the following is a demonstration

of the marching square algorithm. It is being used in this case to extract a simple outline

from a sprite character contained in a bitmap image. The technique and code here is based
on the image displayed below and is essentially the 2D implementation of the 3D algorithm.
(Spiess, 2010) The algorithm works by sampling pixels contained in a 2 x 2 grid. Based on
the various conditions encountered, determines the next move. For the purpose of the
demonstration, a pixel is placed at ever move of the cursor (top left corner), leaving in the
end, an outline of the sprite character. This illustrates one use of marching squares, in
another implementation; it would be possible to have a case table to look up the correct

contour. The result in the end would a sprite character traced out with polylines.

Page 19

b

- i g mm
N - il | "
= B! T de
a K. & -

16 possible states and the direction this moves the test gr d e the next iteration, In this case an -';-h:j:;r_l_ will
be traced in an anti-clockwise direction. The state X is illegal,

=

BNl
t

Figure 12 (Spiess, 2010)

3.2.1 Marching Square python implementation
What follows next is a proof of concept based on the above diagram. As a use of this

algorithm can be used to lasso around an object it has uses in image manipulation
applications (Spiess, 2010). What is shown here in this demonstration is very high level.
Python is the choice here because of the vast availability of modules that make prototyping
really fast. The code places a cursor on the original image (all in memory), the neighbouring
pixels are each evaluated and based on the outcome, and the next move is decided. The
image below on the right shows what is traced out, when a gray pixel is placed on every

move.

Figure 13 - Original sprite character 16 x 16 - 8 bit Figure 14 - Extracted outline in a new image

Page 20

__author = 'William®
import Image

white = 255

black = 0

def loadImage():
im = Image.open("sprite.bmp")
W, h = im.size

def

def

retorn im, w, h

createBlankImage () :
imgMNew = Image.new("P", (16, 1&))
retorn imgHew

marchingSquare {im, w, h, imglew):
pixels = im.locad()
pixelsnew = imgNew.load()

=10
¥y = 250
skip =0

while True:

X0p = pixels[x, ¥]

yvip = pixels[x + 1, ¥]
Xlp = pixels[x, v + 1]

vlp = pixela[x + 1, v + 1]

if isAleftState (x0p, vOp, xlp, v¥lp):
if x4+2 € w:
X +=1 # go right
pixelsnew[x, ¥] = black

elif isARightState(x0p, v0p, xlp, vlp):

if x-1 »>= 0=
X =1 # go l=eft
pixelsnew[x, ¥] = black
elif isAUpState (x0p, vOp, xlp, vlp):
if v - 1 »>= 0:
¥y =1 # go up
pixelsnew[x, ¥] = black
elif isADownState (x0p, vlp, xlp, vlp):
if ¥ + 2 € h:
¥y+=1 # g ¥
pixelsnew[x, ¥] = black

3

if skip > timeout:
break
skip+=1
imgNew.save {'out.bmp')

Page 21

def isAlLeftState (®0p, vop, Xlp, vlip):
if (x0p is white and y0p is white and ®lp is white and ylp is white) or
(x0p i= black and v0p i= black and xlp is white and ylp is white) or %
(®x0p is klack and vOp is black and xlp is black and vlp is white) or %
(x0p 1z white and yv0p is kblack and xlp i=s white and vlp is white):
return True
else:
return False
def isARight3tate (x0p, vip, xlp, vlip):
if (®0p iz white and vip is white and xlp is black and vlp is black) or %
(®0p i= white and v0p i= black and xlp is black and ylp is black) or %
(®0p i= white and v0p i= black and xlp is black and ylp is white) or %
(20p is white and y0p is white and xlp is bklack and ylp is white):
return True
else:
return False
def isAUpState (x0p, v0p, xlp, vlip):
if (%x0p is black and vIp is white and xlp is white and vlp is white) or 3\
(#0p is klack and vOp is white and xlp is black and vlip is black) or %
(x0p is black and v0p is white and =lp is black and ylp is white) or %
(x0p is bklack and v0p is white and xlp is white and vlp is klack):
return True
else:
return False
def isADownState (x0p, vop, xlp, vlp):
if (x0p is white and vIp is black and xlp is white and vlp is black) or
(x0p is white and vOp is white and xlp is white and vlip is black) or %
(x0p is black and v0p is black and xlp is white and vlp is black):
retuorn True
el=se:
retuorn False
def main{):
im, w, h loadImage ()
imgNew = createBlankImage ()
marchingCube (im, w, h, imgNew)
if mame == " main ":imain()

Page 22

3.2.2 Marching cube algorithm

Sli-r.-al-;+1/ // / /
H.i/ﬂ.m-ﬂ/ /n/+1|+1 11.

Il-'l,..
/ i_/,f/“'hi'”f "”'jﬁ
AT 1.1

2 IN

v N

Figure 15 — A voxel being used to sample between two image slices (Lorensen & Cline, 1987)

To implement the 3D algorithm programmatically, first a cell (voxel) is selected for sampling.
Each of its 8 vertices as it goes is checked to determine if it is inside or outside the geometric
data (by way of some threshold value). If for example it encounters a case where one vertex
threshold value is below a certain limit while the rest are above, then it can be said that this
one vertex is cutting through the surface. The next step then involves looking up the
topological state in a case table. This value gives back the edges that are impacted by this
particular case. The final step is to calculate by linearly interpreting where on the marked
edges, these cuts occur and place a vertex there. Going with the example of one vertex
cutting the surface, the resultant polygon to be rendered would be case 1 from the diagram

on the next page. (Bourke, 1994)

Page 23

Uertex 3 inside
{or outside) the
7 volume
|gosurface focet
11 0
3

Figure 16 Vertex inside, all other outside (Bourke, 1994)

Case 3

Case 11

Figure 17 - The marching cube algorithm has 256 possible cases which have been reduced to 14 through symmetry

(Schroeder & Martin, 2005)

Page 24

3.2 Direct volume rendering

3.2.1 Volume Ray casting

<] viewer

7

volume

viewing ray

Figure 18 Volume rendering (Lacroute, 1995)

As discussed previously, indirect methods work by extracting surface information from
voxels and then displaying it through the use of polygons. This uses the traditional graphics

pipeline.

Direct methods, however, work by evaluating the optical model where voxels properties are
evaluated for how they react with light i.e. emit, reflect, scatter, absorbs or occludes light.

The result of this evaluation is then painted directly to the viewing image (Salama, 2006).

Ray-Casting is considered an image order rendering technique because it evaluates for every
pixel on the image. There are several algorithms available but it is Marc Levoy’s algorithm
that is explained here. To perform ray-casting, for each pixel of the image, a ray is cast into
the volume. Along the ray at set intervals, the volume around it is sampled. Sampling is
performed by taking the surrounding voxels and interpolating colors and opacities which are
then merged with the background color by compositing. This can be done either by going

front to back or back to front in order to determine the pixel color (Pawasauskas, 1997).

Page 25

Shown here is a pseudo code algorithm for how ray casting works as detailed in Philippe G.

Lacroute paper on fast volume rendering (Lacroute, 1995).

For every pixel on the image a ray is cast into the volume (lines 1 and 2). For defined
intervals along the z axis which is the ray cast into the volume raster (line 3). Lines 4, 5 and
6 are performing the sampling of neighbouring voxels to determine the influence color and

opacity. Line 7 adds the result to the pixel image.

for y; = 1 to Image Height
for x; = 1 to Image Width

for z; = 1 to Ray Length

1

2

3

4 For each x, in Resampling Filter (xi, yi, zi)

5 For each y, in Resampling Filter(xi, yi, zi)

6 For each z,in Resampling Filter(xi, yi, zi)
7

Add contribution of Voxel[x,, vo, z,] to Pixel[x; yi]

3.3 Indirect vs. Direct
When making the choice of rendering technique, there is no real obvious winner. The

indirect route which follows the tradition graphics pipeline has a long proven record having
being used in games development. But the fact that a pipeline is being followed introduces
the possibility of bottlenecks. Using the direct route using rays, has a number of advantages
over Rasterization in that it takes into account real world effects such as those of reflections
and refractions. It also has the ability to do visual culling automatically because of its line of
sight nature. Where the use of rays falls down (currently) is that it is slower to render than

that of traditional rasterising techniques (Boulos, et al., 2007).

So back to the choice of choosing which is best to use? What we discover in later chapters is
that a combination of both used together depending on the situation works pretty well.
But for the purposes of development mainly because of time constraints and the risk that
direct may not be supported well enough, indirect will be the choice as it is more reliable. If

the opportunity presents itself, direct may be examined.

Page 26

4.0 Spatial Data structures

From the research so far, numerous techniques have been presented for rendering
volumetric objects contained in a voxel world. However, depending on the resolution (sub
divisions) of the voxel world, a lot of time can be wasted sampling voxels that may have no
contribution to offer to the rendering of the structure. Also the issue arises if there is to be
an interaction with the structure (i.e. a manipulation of a voxel), how can the data
associated with that particular component be located as quickly as possible? This chapter
aims to explore some of the popular spatial data algorithms that exist that could possibly be

of use in accomplishing the primary goal of this thesis.

Spatial data algorithms and games are no stranger considering that with the increase in
computing power, also brings an increase in scene complexity. An example given is
representing a desktop printer would need over 300,000 primitive’s or by taking a Boeing-
777 and presenting it in a scene, would require 500,000,000 polygons when all the parts are
summed together. Taking it further up a notch, when considering a naval submarine, it is
tens time more complex than an airplane while an aircraft carrier has ten times more the
complexity of a submarine (Cripe & Gaskins, 1998). So it seems clear that the need for an
algorithm to speed up queries where any scene renderings or collision detection maybe
involved are well justified, and so that we will begin to take a look into spatial data

structures.

Page 27

Spatial data structures

Spatial data structures exist to organise geometry that may be contained in a scene into
some n-dimensional space. They are hierarchical in nature and works by each level holding
the level below it, continuing recursively until so criteria is satisfied. A popular use of these
hierarchical structures exist in graphics and games development to accelerate queries that
may be required for the purposes of collision detection, ray tracing or culling algorithms

(Haines & Akenine-Moller, 2002).

These structures are of particular interest in the course of a voxelized world when research
has shown that “30% and 70% of time spent in isosurface generation was spent examining
empty cells” when a cell by cell approach is taken. This applies in particular to the marching
cube algorithm as time can be saved if empty cells are partitioned from cells of interest

(Wilhelms & Van Gelder, 1992).

Speed improvements that can be obtained from adopting the use of a tree structure can

take from being O(n) to being O(log n) (Haines & Akenine-Moller, 2002).

When it comes to analysing what are the different available data structures we find that
there are many types of spatial data structures that could possibly suit the needs of this
project. These include the Bounding Volume Hierarchies, Binary Search Portioning and
Octree which will get a more in depth look because of its nature and how it suits the

direction this thesis is moving in.
Bounding Volume Hierarchy

This algorithm works by surrounding objects with simple geometry i.e. taking a complex
aircraft model it could be surrounded by a sphere. By doing this it is much easier and faster
to look up and deal with an object than to look up the object it is enclosing. Some uses of
the BVH includes the area of frustum culling which can be seen in the diagram below, it is
useful for finding scene objects with ray intersection as well as collision detection in games

(Haines & Akenine-Mdller, 2002).

Page 28

inerseet

intersect insnke

a9 (O] 4] <

intersect gtsade imzice imside insnde

Figure 19 - Frustrum view culling (Haines & Akenine-Médller, 2002)

Binary Space Partitioning trees

Two types of BSP’s exist, these are the Axial or the Polygon aligned structure. They work by
dividing space in two and then sorting which geometry goes where depending on its
location. These offer an advantage over the BVH in that depending on how they are

traversed; the contents can be sorted from any point of view.

Axial Aligned BSP Trees

This takes the entire scene world and encapsulates it within an Axial Aligned Bounding Box,
each one of these boxes can be recursively sub divided into smaller boxes. The split can be
half and half but doesn’t have to be. If plane or dividing line is found to split an object it can
become part of both or subdivide further splitting into two objects. An alternative use of an
Axial Aligned BSP is K-d trees. K-d trees can be thought of a form a BSP trees where a box is
split along the x axis, the children are split by y axis and with the grandchildren along the z
axis. These types of trees are useful for ray tracing or collision detection because if there is
no intersection with a parent bounding box then there certainly won’t be an intersection

with the children. This saves a level of searching.

Polygon BSP

Similar to the previously described algorithm with the exception that a polygon is used

instead to subdivide, this is more time consuming than the AABB, it is normally computed

Page 29

once and the beginning of the program and stored for reuse. It works best when the tree is
balanced, unbalanced tends to be in-efficient. A useful use for the polygon BSP is for the
use of the painter’s algorithm as it is capable of establishing a back to front or a front to
back by traversing it from a particular view. In this case, it could substitute the need for a Z-

Buffer (Haines & Akenine-Moller, 2002).

4.1 Octree
The Octree is going to get a preferential view because of the suitability it lends to spatially

partitioning six sided objects in a hierarchical cubic world. This justification is coming from
reading about experiments into papers on optimising volume rendering such as that written

by Wilhelms and Van Gelder (Wilhelms & Van Gelder, 1992).

In their paper, they found that the sometimes large data associated with a volume lends
itself to being unable to render quickly in real time. They experimented with the marching
cube approach (evaluate each and every cell / voxel) and octree traversal. The results found

that in all cases, that the use of the Octree was faster than the marching cube.

The technique of spatial representation by using Octrees was pioneered by Donald
Meagher, in his paper Geometric modelling using Octree encoding he presents his technique
that “arbitrary 3-D objects can be represented to any specified resolution in a hierarchical 8-
ary tree structure”.

TF Tl Rl ot s CowevETeLy encoseo

. BY THE OBJECT
ol I PARTIAL (“P")- CUBE PARTLY INTERSECTS
QBJECT

OBJECT REPRESENTATION

ﬂ \ LEVEL O

Fic. |. Simple object represented in Octree Encoding formal {a) Numbering sequence and label
definitions. (b) Three-level tree representation of an object.

Figure 20 - Octree representation (Meagher, 1982)

Page 30

Octree works by having a root which represents the world, represented by level 0 in the
figure below. Within this root, providing there objects in the world will be further
decomposed into 8 nodes. If the node is describing the complete object then there is no
further action and is now considered a leaf. However if there is any discrepancy, the node
will further divide into 8 children. Meahger puts forward that the tree structure offers
numerous advantages, among them being the ability to represent an object to the precision
of the smallest cube. Another advantage offered is that regions of space, if traversed in the
right sequence, will be visited in a constant direction. This is of big benefit in application of
game engines where hidden surface removal is used as no sorting or searching is required

(Meagher, 1982).

Page 31

5.0 WebGL

X
0 Khumbu Icefall 5,485m

7 1 N

Base Camp 5 364m \
A
\

Nuptse 7851m

=
™
N = L =
£ - o S
~ ~ = = N Dingboche 4,530m

Figure 21 - GlacierWorks WebGL presentation of Mt Everest in the Himalayas - http://explore.glacierworks.org/

5.1 Introduction and brief history

OpenGL, with the GL standing for Graphics Library, is an Application Programming Interface
that allows for developers or enthusiasts to write applications that have access to the
underlying graphics hardware. By having this interface, it maximises the portability of the
users applications allowing them to write once and go anywhere without having to be

concerned with platform specifics.

OpenGL came to life by Silicon Graphics Inc. (SGI) who was a developer of high end graphic
workstations. Because their competitors were producing much lower cost solutions, SGI
decided to focus on portability. They cleaned up their APl implementation and released it to
the general public to use royalty free. The first version; OpenGL 1.0 was released in 1992.
Around the same time SGI set up a group that had input into the OpenGL standard. Today,
this is managed by the Khronos Group which consists of over a hundred members including

AMD, NVidia, Intel and Sony. (Sellers, Wright Jr, & Haemael, 2013)

OpenGL ES which was derived from the main OpenGL branch is designed to run on
embedded systems such as mobile phones. Version 2.0 of this implementation was
released in 2007 and it is this release which WebGL 1.0 is based on. The Khronos group
released the first version of WebGL in 2011 and as mentioned earlier are also responsible

for maintaining the standards of the process.

Page 32

WebGL allows for the drawing and interacting with three dimensional graphics through a
standard browser without the need for any plugins. WebGL which can be combined with
HTML5 and JavaScript allows for developers to create web content which is more dynamic
(Matsuda & Lea, 2013). Some additional benefits WebGL has to offer from developers point
of view is its cross platform deployment, Windows, MAC or Linux are no longer a barrier.
Looking for examples of the potential of this technology, we need only look at the dynamic

content on the GlacierWorks site (http://explore.glacierworks.org in the image above). Users

get a more immersive experience by being able to interact with the 3D model of the
Himalayas and experience flybys therefore adding to the learning experience which is can be

harder to get from looking at static sites.

5.2 Pipeline

Web Applications
HTML + C55 + JavaScript +
Shader Source Code + 30D Modeling Data

WebGL
JavaScript AP
15 0
1 Per-Fragment Operations
| I
! —l —l |
! I
! I
: l
Vertex \ . ’ !
Shader : Scissor Test Blending :
! |
! |
! |
! I
¥ : h |
' 1
. I Multisample :
:::::1;{_ ! Fragment Dithering !
ssemily : Operations. 1
! |
|
| I (SRR R
| | J,‘
1 | p
1 : /
Rasterization : Stencil Test X Drawing
= . ! ! Buffer
1 1 /!
1 1
| 1
1 1
| i
: 3 1
1 1
Fragment : Depth Buffer :
Shader ! Test !
1
i |
[L |
1
1
1

Figure 22 WebGL Pipeline (Anyuru, 2012)

Page 33

To render a scene, a series of processes must be followed in the WebGL pipeline. The
following section aims to breakdown and explain each step in the pipeline process. The
following is a an explanation of what happens at the various stages as outlined in Andreas
Anyuru’s Professional WebGL Programming : Developing 3D Graphics for the Web (Anyuru,
2012) as well as making reference to the OpenGL super bible (Sellers, Wright Jr, & Haemael,
2013).

Vertex Shader

This is the first stage in the WebGL pipeline. It is a program that describes the position and
colour of a vertex. This is user configurable by writing a program in a C like language known
as GLSL.

ertew shade =

iU d

void main()

1
b

gl Position = vecd (8.8, 8.8, 8.8, 1.8);

Primitive Assembly
Now it is time to take the vertices from the previous step and assemble them into primitives

such lines or triangles. Also at this stage primitives are sorted from those which exist within
the view frustum and those that don’t. Basically it is checking to see which primitives are

visible to the screen and it is only these that move on to the next stage in the process.

Rasterization
This is a process of taking the primitives received from the assembly stage and turning them

into fragments. This can be a visualised as taking a triangle and approximating it to pixels.

This information is then passed on to the fragment shader.

® . Fragment
- - . - Shader
A - . . gl_,FragCnlu::,—_l
v_Color;
> . I EEEE

Figure 23 (Matsuda & Lea, 2013)

Page 34

Fragment Shader
Fragment shaders determine the color of the fragment. Below is an example of a very basic

fragment shader program.

vold main()

1
b

gl FragColor = vecd4(1.8, 8.8, 8.8, 1.8);

Per Fragment Operations

Scissor Test
This is a culling operation, if the fragment lies within the scissors rectangle it is kept and

moves on to the next stage, otherwise it is dropped.

Multisampling Fragment operations
This provides a means of anti-aliasing which is to prevent edges looking jagged when

displayed on screen. It works by averaging out pixels on the edge and those adjacent to it to

give the smoother appearance.

Stencil Test
This test performs a comparison of a value in the stencil buffer and a reference value. The

test is similar to having a card board cut out and placing it over the value to see if they

match. Those that fail the test are discarded.

Depth Buffer Test
This test evaluates the depth value of the incoming fragment against the existing content of

the depth buffer, again, this determines whether the fragment gets discarded or moves on

to the next stage.

Blending
Having survived the depth buffer test, this stage allows combining the color of the incoming

fragment color with the color that is already in the color buffer that is at the same position.

Dithering
This is the last step before the draw buffer; the idea here is to arrange the colours in such a

way as to give the illusion that there are more colours available than there actually are.

Page 35

5.3 Browser support

WebGL is designed to run in most of the modern day browsers, this includes; Google
Chrome, Motzilla FireFox, Apples Safari and Opera. Up until recently Internet Explorer did
not support WebGL but with the release of IE11 has seen a change that could possibly see a

wider uptake in WebGL projects. (MSDN, 2013)

An interesting discovery was made during the course of research into how WebGL is
supported on Windows operating systems. OpenGL isn’t a problem on systems where
OpenGL is the main graphics API such as Linux and OSX systems. But due to the fact DirectX
is the primary API for windows and to avoid issues with the availability of certain drivers,
both Chrome and Firefox use DirectX calls instead of OpenGL to ensure that maximum
compatibility with the Windows operating system. WebGL can of course be enabled by
appropriate use of flags in chrome or in FireFox by editing the configuration file as shown in

the figure below.

To make use of DirectX, both use the ANGLE (Almost Native Graphics Layer Engine) project
to convert WebGL’s or OpenGL ES 2.0 API calls to DirectX 9.0 or DirectX 11.0 API calls. The
library is open sourced under a BSD license because it is still under development. The
project is currently the default for both Chrome and Firefox when run on a windows

machine.

As well as its primary use above, the tool may also prove to be useful for the purposes of
prototyping OpenGL ES applications on windows since it design to handle those API calls

(Bridge, 2010).

(- Firefox | abouticonfig
|&) Most Visited {_| Getting Started | Mail | | New folder { | myDocs

Search: | webgl.prefer-native-gl

Preference Name + Status Type Value

webgl.prefer-native-gl default boalean false

Figure 24- Firefox by default has native WebGL disabled and defaults to ANGLE + DirectX instead.

Page 36

5.4 Security
OpenGL ES being a shader based APl means that it has access to the graphics processor in

order to render a scene to the screen. While ordinarily, for an embedded system, little
security is needed with API calls as they would normally never be any danger of being
accessed from outside influences. But with WebGL being capable of making API calls
directly through JavaScript, extra precautions are needed to prevent security breaches.
One notable security breach which was documented in an early implementation of WebGL
in Firefox discovered a way to steal data from a user by capturing screen shots of a user’s

screen (Forshaw, Stone, & Jordon, 2011).

The above example of security breach was an example of not complying with standards set
out by the Khronos Group. The following is a list of the conformance standards in WebGL

specification from the Khronos website (http://www.khronos.org/webgl/security/).

Undefined Behaviour

In contrast to OpenGL ES, if a call to read a pixel is made outside of the confines of the
frame buffer is defined as ‘undefined behaviour’ and is of no real risk. However in WebGL
to prevent the risk of getting access to pixels that are outside of the frame buffer, the
standard specifies that these values are set to 0. Similarly, WebGL defines that range checks
are done on areas that have memory access to prevent web code gaining access to data

outside of its designated bounds.

Access to non-Initialized Memory

In normal conditions when a graphics APl is assigned memory, it fills it with the content for
which was designated for; there is little worry for its previous contents. In WebGL however
there possibility of accessing old data, for this the specification states that the memory

should be zeroed. This of course can impact on performance.

Denial of Service

A user’s machine may become unresponsive if there are a large number of primitives to be

drawn. This is can happen especially if there are complex shaders associated with the calls.

Page 37

To prevent this checks are normally built into the operating system that will reset
operations that are taking too long. The WebGL has in its specification is that a user can be
alerted to any reset that takes place and ask them do they wish to continue with the

operation.

5.5 THREE JS Library
Three.js is a javascript framework which is under constant development that created by

Ricardo Cabello. The purpose of the framework is to abstract WebGL calls to a high level
and in doing so allow an easier entry point while also speeding up development times. The
library is available under an MIT license which allows reuse as long as the original software
license is included. While document and tutorials are available at threejs.org, the source is

available on Github for anyone to fork and contribute to the effort.

The following code illustrates best what the library does, in 37 lines of code most of which is
self-documenting; a simple cube is orientated and rendered to the screen. The equivalent
of writing this in pure WebGL would require substantially more code along with difficulties

in debugging.

Page 38

<html>
<head>
<titlexMy first Three.js app</title>
¢<stylercanvas { width: 188%; height: 188% }</style>
</head>
<body>
¢script src="three.min.js"»</script>
<script>
var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(73, window.innerWidth/
hindow.innerHeight, 8.1, leea);

var renderer = new THREE.WebGLRenderer();
renderer.setsize(window. innerilidth, window.innerHeight};
document.body.appendChild{renderer.domElement);

var geometry = new THREE.CubeGeometry(l,1,1);
var material = new THREE.MeshBasicMaterial({color: exeaffee});
var cube = new THREE.Mesh(geometry, material);

cube.rotation.x = 68;
cube.rotation.y = 68;

scene.add(cube);
camera.position.z = 53

var render = function (} {
requestAnimationFrame(render);

renderer.render(scene, camera);

b

render();
</script>
</body>
</html>

Figure 25 - Simple cube rendered in Web Browser

Page 39

6.0 Digital Sculpting

6.1 Introduction

This chapter leads into where the project direction is going. Here we will present an
overview of what is implied when we speak about working in the 3D environment from an
artist/sculpting point of view. We will look at the traditional mesh modelling and sculpting
which is a popular choice amongst 3D artists. The chapter will then begin to examine
research that has been performed in the area of volume sculpting and also research into the
area of virtual clay sculpting where researchers demonstrate their technique into bringing
the art of true to life clay sculpting that artists are familiar with into the digital arena. This
sense of realism is not available in traditional meshes as they have no density to alter when

physically manipulated.

6.2 Working with Traditional Modelling tools
The essence of working with 3D modelling tools is not to recreate the world in 3D; rather it
is to present a 2D image similar to which a photographer may capture of real world objects

(Hess, 2010).

Many tools exist on the market today that facilitate this art form including Autodesk 3DS
Max, Maya and ZBrush to name but a few. However Blender3D is the choice for

demonstrative and comparative purposes because of the authors experience with the tool.

Blender3D has an interesting history having being originally created for in house commercial
purposes. The company was a Dutch animation company NeoGeo founded by Ton
Roosendal. As the product at the time needed to be re-written, Ton founded another
company that marketed and developed products and services around Blender. However
with disappointing sales the development was discontinued. Because of the huge interest
by artist community, it was decided to try and get Blender open sourced rather than go to
waste. A bid to raise 100,000 EUR was made so that investors would allow the tool to be
opened sourced. That goal was reached in seven weeks and now Blender exists under the

General Public License and is maintained by the Blender Foundation with the help of

Page 40

volunteers and community donations (Blender Foundation, 2013). The tool can be freely

downloaded today from www.blender.org

When working with the 3D environment, there are several concepts that need to be

understood. The concepts are common across most 3D modelling packages. These include:

Vertices — Is the simplest of elements, it is a
point in 3D space represented by an X, Y and
Z coordinate. On its own it has little to offer
visually but in combining them they can form

simple polygons.

Edge — An edge is classed as being the line

drawn between two vertices.

Page 41

Faces — consists of a minimum of three
vertices linked together. Faces have a
normal associated with it to determine how
light will interact with it. The normal are
perpendicular to the face represented as a

unit vector.

Meshes — Are a combination of all three
discussed elements that come together and
form the bases of a model.

Meshes can be open or closed structures

such as the box shown here to the right.

Lighting — To illuminate the scene, there
needs to be lights. Lighting in the 3D
environment is as much of a science as it is
in the real world and is worthy of a
discussion in its own right. However for the
purposes of giving a general overview here,
Blender provides two types of lighting,
Directional l.e. A spot light or non-directional
lighting which is referred to ambient lighting
l.e. a light that has no particular source but

affects all objects in a scene (Hess, 2010).

Page 42

Material — Define how light interacts with a
surface. Such properties that can be set are

colour, diffuse and specular. (Hess, 2010)

6.2.1 Box modelling

This technique is one of the easiest ways to begin modelling. This iterative process starts
with a simple primitive such as a cube. The primitive is subdivided and a subtle amount of
detail is added at each stage by moving vertices, edges or faces before adding more
subdivisions. It is a skill that requires a lot of practice to perfect but the results can be quite

impressive.

Page 43

Figure 26 - Step by Step progression of the Box Modelling technique (WikiBooks.org, 2013)

6.2.2 Mesh Sculpting

6.2.2.1 Description
This technique is similar in ways to the box modelling technique described above. However,

instead of directly selecting and manipulating individual vertices, edges or faces, a brush is

instead used. This brush automatically determines and selects the appropriate vertices.

Page 44

The user is left then to select an appropriate brush and “paint” the relevant action on the

mesh (wiki.blender.org, 2013). A Selection of the different brushes on offer by blender is

shown below.

Blender sculpt tools

Grab / Pull (Outwards) Grab / push (Inwar

ds)

Draw (Add) Draw (Subtract)

6.2.2.2 Dynamic topology
This is a sculpting tool offered by blender that allows for subdivision of meshes as required.

The subdivision occurs when an artist’s brush comes into contact with an area of the model.
Below shows the influence of the technique as a draw tool is only used on the top face of
the model. The top face (with 3D drawn on it) receives numerous sub divisions while the
faces further away receive less sub divisions. Having this technique allows to artist’s to

sculpt complex shapes from simple meshes (Blender.org, 2013).

Page 45

AT
2y gﬁi"';

=i
I,

i:‘_.'
R

X
=

7

WS

Y b
A

IR

Draw tool with Dynamic Topology Effect of Dynamic Topology on the mesh.
enabled

6.3 Volume sculpting

Some of the earliest attempts at performing volume sculpting were by Galyean and Hughes
(Galyean & Hughes, 1991). In their paper they present how they set about developing an
application that could perform free form sculpting that takes input from a 3D device. The

3D device controlled the tool that performed manipulation of the object.

The model in their sculpting environment was represented as voxel data, this voxel data is
then converted to a polygon structure by use of the marching cube algorithm. The world is
described as a grid where the clay model is described by having a value of 1.0 while empty
space is described with a 0.0. The tools they used on this model worked by simply changing

these values.

Some of the tools they provide to interact with the model were an additive brush which
could paint / add on to the object by simply hovering the tool over it. A heat gun style tool
was present for the purposes of knocking back or cutting away the material it came in
contact with. Sandpaper like tool was also experimented with for the purposes of filling and

smoothing ridges and valleys.

To interact with the model they adapted a similar technique to 2D painting. Where painting
is performed by moving a brush over a canvas and changing the pixel values beneath,

applying to 3D was not a trivial task. 2D is viewed from a single view point whereas a 3D

Page 46

structure can be viewed from any direction. Also the issue of discerning the border meant
that some form of thresholding algorithm was required. For displaying purposes they used
a 10 x 10 x 10 voxel array which was allowed to have full access to all the drawing tools
while for high resolution (30 x 30 x 30) voxel array was given limited tools to prevent

overloading the processor.

Computation of the iso-surface was a concern (especially considering this was early 90’s)
where it n X n X n arrays has a big O notation of O (n®). Performing a draw on the whole
model often would be very expensive. What they realised though was that the sculpting
tools only ever had an effect on small areas so there was never a need to perform a full re-
drawing of the model. To determine which voxels were affected and should be redrawn,
they employed a hashgrid which is where they divided up the screen into a grid and
associated a linked list collection with each cell. If a cube that has polygons that contribute,
and if it overlaps it is added to this list. If a cube is determined to have been affected by the
sculpt tool it has a flag set and the marching cube algorithm only affects that voxel in the re-

draw pass.

Wang and Kaufman later too researched into developing also a user friendly volume
sculpting application (Wang & Kaufman, 1995). They noted that Galyean and Hughes
research worked fine for clay like structures, but it could not represent true to life realistic
objects. Also they used a mouse as oppose to a 3D input device as they felt it was more

natural.

Wang et al set about creating an easy to use tool that could be used for giving a “first pass”
model design that an artist may choose to use over a 2D drawing. Similar to Galyean and
Hughes approach they also decided to minimize computation of the model by performing
updates on the areas affected by the modelling tool by way of ray casting as hashgrid

projection calculations used by Galyean et al.

The employed a 3D volume raster (voxel grid) to store information on the objects being

manipulated and also facilitated the modelling of multiple structures in a single scene. They

Page 47

also introduced a world to local coordinate system that allowed rotating of individual

structures.

The modelling technique was also an interesting development as they stored the tool also in
a 3D volume raster. This meant for a tool action to be performed they simple placed the

tool over area and performed a Boolean operation.

The Boolean diff operation for removing material was as follows:
Adiff B=A—AB

While the union operater allows adding to the volume as follows:
AUB=A+B—-AB

For the purposes of rendering, ray casting was employed, where rays were cast into the 3D
raster to determine intersections and pixel colours. They also made use of their own special
antialiasing algorithm that determined if a ray was close to an edge and in doing so give a
smooth transition between object and background. The ray casting technique also made
use of progressive refinement, where, a fast low quality image is rendered followed by
updates that bring it up to high quality. This is so a user is seeing something on screen

rather than having to wait for all calculations to complete.

6.4 Virtual clay modelling

Dewaele et al in their research paper present a method of sculpting clay in a digital
environment (Dewaele & Cani, 2004). One of the issues they uncovered and motivated
their research was that real time clay manipulation in 3D was by and large still an unsolved

problem.

The researchers identify clay as being as “simple and intuitive way to create complex

IlI

shapes; even children use clay at school” and also that “many artists prefer expressing

themselves with real materials instead of using a computer”.

Clay they found was perfect for modelling because it exhibits such properties as plasticity,

mass conservation and also surface tension that holds it together for the most part. So

Page 48

getting the “benefits of real clay into a computer based modelling system” was a true

motivator for the researchers.

As mentioned, the characteristics of clay exhibit three main properties that make it suitable

for sculpting, the researchers found that:

e “Real clay mainly undergoes totally damped, plastic deformations.” Means that
changes are largely irreversible. Clay does exhibit some elastic properties (a memory
that wants to return to original form) but overall its effect is negligible.

e C(lay is also uncompressible; it preserves volume during transformation and is
referred to conservation of mass.

e Finally, clay generally holds together which can be attributed to its surface tension.

So to implement this, the researchers, developed three layers or rules to follow when

designing there application.

The first handles the effect of twists and bends, when implementing, they tried firstly using
a Finite Element Mechanism and spring mechanics on the entire modal but found that it was
too slow. They instead found employing fluid mechanics theory whereby “when an element
in a viscous fluid moves, it pulls nearby fluid elements with it” therefore it exhibits a

propagation effect.

The second enforces volume conservation and the third serves to enact a surface tension
mechanism that keeps the volume as compact as possible. When performing a
manipulation, if they found a cell where its density was greater than 1, the excess would be
distributed to the surrounding cells. If the cells absorbed all the excess, then the process

stops.

The final control layer aims to keep the gradient of densities near the surface at an
acceptable value. Basically the intent here is to avoid expansion whereas the previous step
was avoiding contraction. Even still they found that some pieces escaped leaving a bread

crumb effect, they absorbed it back in to prevent distracting the user.

Page 49

For rendering, similar to the techniques detailed earlier, they made use of the marching
cube algorithm on areas that were affected by sculpt tool changes. If they found a large
scale change had taken place then they employed a fast rendering technique that used ray
casting. The ray casting had the affect similar to that of throwing a cloth over an object.
However rendering this alone with ray casts coming from a single view point meant that if
there two separate objects overlapping then they would be seen as been merged. To
overcome this they performed additional ray casts in areas where they found quick changes

occurring in the z buffer values.

Page 50

7.0 Research Questions

The purpose for this research has two primary goals that go hand in hand as of equal
importance. These are to investigate the use of WebGL while trying to determine is it a

viable option for developing a volume sculpting application.
These form the questions we want to answer:

e How viable is JavaScript, being a dynamic language, for creating large scale
applications?

e How can JavaScript deal with large computations, how can bottlenecks be dealt
with?

e Can avolume sculpting application be implemented in WebGL?

e Canthe use of WebGL help in avoiding a vendor lock in?

e |sTHREE.JS a good choice of wrapper library for developing 3D applications? Can it
boost productivity over using pure WebGL?

e When creating a volumetric model, how can the volume be manipulated and
rendered?

e How can material properties such as elasticity be replicated or mimicked?

e Canthe use of spatial data structures be used improve performance in this project?

e What are the possibilities with using volume sculpting?

e Ultimately, is there a future in WebGL?

Page 51

8.0 Research Methodology
This thesis was written with two goals in mind. We want to design and develop a 3D digital
sculpting application that takes volume into account rather than the traditional empty mesh

sculpting applications.

With the ability of now being able to develop 3D applications / games with WebGL opens up
a whole new cross platform market. This forms the next goal which is to deliver this content

through the use of a web browser alone.

With the goal of the thesis defined, it set the path for the research and literary review.
Volume rendering/graphics was the first port of call in the investigation as it is a well-
established research area into how volume data is taken into account when rendering. This
is a huge area having a lot of medical applications when it comes to rendering 3D models

based on 2D data acquired from CT/MRI scans.

To find relevant research material, IEEE and science direct provide an excellent source.
Other sources included the online college library as well freely available papers on the

internet such as Google Scholar.

To begin with a gentle introduction before jumping into 3D volume data rendering, an
overview into data visualisation was first researched to present what techniques were used

to present information such as scalar data or tensor data.

Next began the investigation into the field of volume rendering. This is a huge area and
required quite a bit of reading to establish the key important points so that more targeted
research could be focused in those areas. This mainly came down to investigating indirect

rendering using traditional pipeline technology or direct rendering techniques.

The previous chapter on volume rendering spurred another area of research which was the
use of spatial data structures to optimise searching 3D volume data. The chapter delivers an
overview of different data structures but focuses on the Octree due to the popularity in

papers researched.

Page 52

A discussion on WebGL followed next as this will be the product delivery medium. An
introduction is given, a brief overview of the pipeline and some security issues associated

with the technology and how the risks are mitigated.

The final research chapter deals with digital sculpting. This chapter is in essence the glue
that ties all the previous chapters together in the unified goal of the thesis into creating a
volumetric sculpting application. The chapter begins by giving a brief introduction into the
methodology behind the traditional mesh modelling and sculpting techniques. Following
that, the discussion moved into looking at the research that has been performed in the area
of implementing volume sculpting. The chapter then closed out by looking at research done

into creating virtual clay like modelling tool and examining the techniques used.

Page 53

9.0 Design

9.1 Test Plan
The goal is to implement volumetric sculpting in the web browser. The requirements

identified for this for a user to perform digital sculpting is a machine which is reasonably up
to current specifications. This machine must run Chrome, Firefox or Internet Explorer 11

and have JavaScript enabled.
The following are the project objectives from a user’s standpoint:

e The user should be able to pan and zoom around a solid object in 3D space.

e The user should be able to add and subtract without causing mesh destruction.

e The user should be able to manipulate the object by pushing and pulling.

e The whole operation should run without any penalty on the machine i.e. slowing

down.

Below is a series of images taken from the sculpting environment in Blender 3D. The image

shows a small range of operations that can be carried out on a geometric model.

The goal is to replicate this but with a volumetric structure. The objects shown are empty

shells and so are not true to life. Sculpting with clay in real life has volume and it is the aim

of this thesis to replicate as best as possible and determine if it is viable and does it offer any

benefits.

Page 54

Figure 27 - Blender Grab (Pull)

Currently:

The blender model when
pulled simply gives the
impression of skin being

stretched.

Expected:

As it will be volumetric and
each voxel tied together,
the whole model should
distort while maintaining a

constant mass.

Figure 28 - Blender Grab (Push)

Currently:

Blender when the push tool
is used, the reaction is
absorbed with no effect on

the other side.

Expected:

When push is performed,
maintaining a conservation
of mass, the other side

should bulge out.

Page 55

Figure 29 Blender Draw (Add)

Current: Blender adds
to the model by
inflating the geometry

resulting in a bulging

effect
Expected: The
application should

literally draw by
adding new structure
on top of the existing

structure

Figure 30 - Blender Draw (Subtract)

Current: Blender here
performs the opposite
to the above. The
draw tool with subtract
enabled causes the
geometry it effects to

deflate or shrink.

Expected: The
application should cut
away the geometry
that the tool influences
revealing the internal

volume of the model

Page 56

9.2 Prototype Development

The first experiment of developing a prototype was to get a pure rather crude voxel object
that represented scalar data contained in a world. The grid seen below represents the
world. The world is divided by a grid with each block being known as a voxel. Within this
world a sphere is placed by way of a mathematical representation (Centre and radius). A
cursor is placed at the bottom corner of this world and on every hit of the return button, the
cursor moves along one block in the grid. On every move, the cursor evaluates whether it is
with the bounds of the sphere or not. If the centre is found to be within the bounds of the
sphere, a cube is placed at the cursors location, the cursor then simple moves on to the next
voxel when the return key is pressed. If a voxel is evaluated as being outside of the bounds
of the sphere, no action is taken and the cursor will wait for the return key before moving

on.

The result of this process after applying a material and suitable light source is a heavily

pixelated but discernable representation of the mathematical sphere.

Figure 31 - Results of the first prototype
Moving on from the above experiment, the next prototype is built on the reading of a paper
by Paul Bourke on the marching cube algorithm which was explained earlier. (Bourke,

1994). What this does over the previous example, is the ability to offer a contoured

Page 57

geometric shape that doesn’t look pixelated while still working with a volumetric structure.
Work performed by Lee Stemkosi into Threels and the marching cube was also instrumental
in helping to understand the creating of polygons that formed the surface of the volumetric

sphere (Stemkoski, 2013).

A “Solid” sphere (represented only by radius and location) again was place in the centre of

the world represented by the grid. The steps of the program are as follows:

1. Move the cursor to the next cell / voxel.

2. For each of the eight vertices of the cursor evaluate whether inside and determine a
look up index.

Go to the edge table to determine the faces impacted.

Perform a interpolation on each edge to determine where a vertex should be placed.

Create a face that joins the vertices and add a material to it.

o v &~ W

Move to next cell.

Page 58

9.3 Next step
So far, being able to implement a Marching cube algorithm was a huge step forward as it

means contouring can be applied to the model rather than having a pixelated model. The
next step in development will be to abstract what we have learnt here and apply it towards

developing a usable volume rendering engine to which we can apply to our end goal.

Following this, experimentation will begin into trying to introduce the mechanics necessary
to offer a realm of realism when the structure is manipulated. This means basically if a push
force is applied, then the model should behave as a dense structure similar to the properties

of clay while maintaining a conservation of mass.

Page 59

9.4 Risks

Solution / Mitigation

Using THREE js framework for development

as it is an unfinished framework.

The underlining calls are still WebGL, so
what’s not available can be added as

the source is open.

JavaScript code needs to be maintainable as
possible, while having a good idea design
methodology in a statically typed language.
Can JavaScript have the same good coding

practices?

Plenty of material is available that
teaches good design methodology when
it comes to JavaScript so with some
study, good practices can be introduced

into the code.

Developing in JavaScript will require a good

debugging platform

Use of JetBrians WebStorm IDE provides
an excellent debugger that provides
operations similar to Visual Studio that
allows peering into an Object’s

properties.

Testing is important to insure compliance

with requirements, can JavaScript be tested?

There are many packages available that
allow the testing of JavaScript code i.e.

QUnit

WebGL is not supported on Internet Explorer

browsers before version 11

Build some browser detection and

warning into code.

Implementing realistic clay like mechanics
will require a great deal of time and

experiment to give authentic look and feel

This will just require time to examine
some more research into the area of

fluid mechanics and mass conservation.

Page 60

10.0 Development

10.1 UML

While still at an experimental design stage, this UML represents the requirements of the

project. The THREE JS library is imported into the project and used for scene, lighting,

camera and rendering purposes. A custom Octree will be developed and is represented by

the world class. The Octree will have children and the node class can be used as either a

node or a leaf. The position enum (or JavaScript equivalent) is used to distinguish each of

the eight blocks of a subdivided parent block.

SeulptdS_GUI

I+ sculpt

+eveniListener(}
+ updated)
+render(}

THREEJS

end

SeulptJs
+field: World

+add(}
+load()
+pull{)
+pushi}
+save()

+ subtract()

World
+ root

size

+inserNode()

RemoveNodel)

Node
+ children
isLeaf
position

property

position

p_front_left
p_front_right
p_back left
p_back right

own_front_left

Figure 32 - Preliminary UML Sketch

Tt e

Hown_back_left

pown_back_right

Page 61

10.2 Use Case Diagram

Loac a base object

Free Ocbit/Zocm /Pan
Object

Digitally sculpl a volumetric object
in a web based environment

Reshape / Sculp: the
object

Add 1t the ubjecl

Save the object

Page 62

10.3 Development tools

10.3.1 Three]JS / WebGL
This framework abstracts WebGL calls to a high level and in doing so allow an easier entry

point while also speeding up development times.

10.3.2 QUnit - http://qunitjs.com/

QUnit is a testing framework that is provided by the same people who develop JQuery and
JQueryUl as they use it for testing their projects. The following is a simple example from

there website of how a simple test can be carried out.

A minimal QUnit test setup

1 | <!DOCTYPE html>

2 | <html>

3 | <head>

4 <meta charset="utf-8">

3 <title>QUnit Example</title>

6 <link rel="stylesheet" href="/resources/qunit.css">
7 | </head>

8 | <body>

9 <div id="qunit"></div>

10 <div id="gunit-fixture"></div>

11 <script src esources/qunit.js"></script>
12 <script src="/resources/tests.js"></script>
13 | </body>

14 | </html>

The contents of tests js

test("hello test", function() {
ok(1 == "1", "Passed!")}

1
2
31D;

The result:

QUnit Example

[Hide passed tests [Check for Globals [No try-catch

Meozilla/5.0 (Windows NT 6.3; WOWE4) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/31.0.1650.63 Safari/537.36

Tests completed in 32 milliseconds.
1 assertions of 1 passed, O failed.

1. hello test (0, 1, 1) Oms
10.3.3 BootStrap - http://getbootstrap.com/
This was a project that was originally created by developers at twitter. Bootstrap is now a
frontend framework that allows for fast development of responsive webpages that also

target mobile web. One of its best features is the way in facilitates easy grid layouts.

Page 63

Hello, world!

This is an example to show the potential of an offcanvas layout pattem in
Bootstrap. Try some responsive-range viewport sizes fo see it in action,

Heading Heading Heading

Heading Heading

L]

10.3.4 JetBrains WebStorm 7 IDE

“ WebStorm

WebStorm is a premium IDE developed by JetBrians and targets web development

specifically. WebStorm provides excellent JavaScript support as well as an excellent debug
facility. The debug alone is enough to warrant the use and cost of this tool in the

development of the project.

10.3.5 Python Simple Server

@, python

Python 2.7 comes with a web server built-in. This can be accessed by navigating to the

relevant root folder that a user wishes to make available for local web testing and simply

typing:

python —m SimpleHTTPServer

Page 64

=X python -m SimpleHTTPServer = =

C: \Uf‘ex"\'.J11llam\Document"\GltHuh\The"1")python -m SimpleHTITPServer
Serving HITP on B.8.8.8 port 8668 ..

This becomes especially useful when it comes to testing any ajax calls that load local files as
this typically violates browsers cross domain origination policy. This happens because the
browser sees “file://” as being a different domain. An example of this will when it comes to
using web workers which is JavaScripts answer to concurrency. Web workers are stored and

loaded as a separate “.js’ file, thus the need to setup a local testing server.

10.3.6 Git Source control
[
Qgit

GIT is a distributed source control system. Since git has no central repository, it provides an
excellent data redundancy in the event of a system failure. Git is well supported with GUI
interfaces that take the edge off of learning all the commands and this will be the choice for

this project.

Page 65

10.4 Mock User Interface

This diagram gives a mock view of the intended interface. The main screen will present the

model which can have its view rotated by mouse control. A secondary control panel will

provide access to different tools and settings.

VolSculpt v0.1

Control Panel

Color

Page 66

11.0 Developing the Volume rendering and sculpting engine

11.1 How does the Marching Cube code work in detail?

The method used here to implement the marching cube algorithm to solve our problem is
based on work produced in a paper by Paul Bourke (Bourke, 1994) which is available at his

website (http://paulbourke.net/geometry/polygonise). We as well as that will be adopting

Lee Stemkoski (Stemkoski, 2013) method for producing faces to apply to the voxel. The
works mentioned here were analysed and modified to suit the nature of the problem we are
trying to solve. The method Bourke presents is efficient due to the nature that it is primarily
based on look up tables. The first step in our code is to treat each voxel as an individual and
produce a resulting mesh (if any) from passing a reference of the voxel to a Marching cube

function along with a threshold and the material we wish to apply to it.

public static MarchingCube(voxel:VoxelState2, isolevel:number, material:THREE.MeshPhongMaterial):THREE.Mesh

The next step involves determining where each individual corner lies, this can either be
inside or outside and is determined by the threshold l.e. if a value is below the threshold, it
is said to be inside while a value greater than the threshold is outside. The diagram below
shows four of its corners on the inside of a ‘volume’ (marked with a star) while the four

others lie outside.

The algorithm shown below produces a number which is then used to look up an ‘edge
table’. These edge tables were originally produced by Cory Gene Bloyd (see Paul Bourkes

page) and demonstrated by Bourke in his paper.

Page 67

The first step that is required is to 8 bit cube index where each bit represents a vertex.

The result of the cube index then is used to find the edges impacted by looking up the edge

table as described earlier.

This results in a 12 bit number where all the individual bits represent an edge, where, 1
indicates it is cut while a 0 indicates it is not. The snippet below shows testing of the edges
which were impacted and the result if so are passed to an interpolation function which is

discussed next.

Page 68

Once we have this result, the placement of vertices must then decide. For example, if and
edge indicates that one of its vertices is inside and the other is outside, then a vertex must

lie somewhere along that edge and this is where an interpolation must be performed.

This function now aims to position a vertex appropriately between the two corner positions.

A factor ‘mu’ is calculated and is multiplied by the distance that lays between the position 1
and position 2 of the edge. This result is then marked on the edge between Position 1 and

Position 2 at the calculated distance from Position 1.

Page 69

The above code which was originally produced by Lee Stemoski

(http://stemkoski.github.io/Three.js/Marching-Cubes.html) is being abstracted here to form

its own function. What happens where is we are constructing geometry which consists of
faces from all the vertices produced during the previous interpolation stage. Three vertices
form a face and this process continues until all vertices from the complied list in the earlier
function has been used to construct a geometry which can then be returned. A short cut is
been taken here by using a double face as the material which will be combined with this
geometry that will then form the mesh that will eventually be rendered. Ordinarily, meshes
only have one face to reduce computation time, and if it is the case of using a single face
then it is the order of the vertices that decide this. Essentially meaning, care must be given

to the order in which they are added. Using double face, this is now not important.

Page 70

11.2 Developing the Volume rendering engine and testing with image
stacks
This next experiment aims to produce a volume rendering engine leveraging on the theory

presented above. What is hoped to be achieved is to produce a geometric model from a
series of images similar to the medical approach. For this experiment we will use a number
of images that were produced in Photoshop by using the gradient tool. The advantages of
using a gradient over a solid image in volume rendering becomes clear soon as it allows for

the use of a threshold which is demonstrated below.

As mentioned, the images were created in Photoshop and while we could pass these images
(or upload at runtime) we decided instead that to reduce the burden on the client. We
would pre extract the data by using a program that we wrote in Python that loads images
from a file and stacks them according to file name, and then samples based on a grid that
we have specified which should match the same grid format (voxel width and the number of
voxels) as being used in our voxel rendering engine. This was purely a choice to reduce
computation time; we have no doubt that this could have been implemented client side
using JavaScript. The extracted data from the output of our python program was then
placed in a JSON file which the rendering engine obtains from an Ajax request. It then
processes this file and applies the values to each of the voxel corners in our defined voxel

world.

255 127

120

255

125

255 119

Figure 33 - Some sample pixel values applied as voxel corner values

Page 71

Figure 34 Sample image
1 2
3 4
5 6

Page 72

The above sequence of images aims to demonstrate next the steps taken when

evaluating a voxel that lies between too image layers.

o v M W

We deal with 2 images at a time stacked with a space between that are divided up
into a grid of voxels (one voxel is highlighted here for clarity).

Next for each corner we need to determine whether it is inside or outside by
applying some form of threshold. In the example above, it is an 8 bit image with
pixel values from 0 (black) to 255 (white). If a value is below this threshold it is
marked to be inside.

Inside Corner detected

Inside Corner detected

Inside Corner detected

Based on having a case of 4 corners inside, and 4 outside, the procedure is then to
perform a lookup in the edge table to determine which edges are impacted. With
that result, we then need to determine where to position vertices using an

interpolation function so we can build up a surface geometry.

Page 73

1 2
3 4
5 6

The above now illustrates the end goal of how our stack rendering engine aims work. We

will build an image stack with a layer of voxels between the gaps. We then evaluate each
voxel against a threshold; we then calculate and place the representing surface geometry.

What we are then left with is a surface representation of that volume.

The diagram in the next page illustrates the path we took in constructing our solution. We
will make use of both AJAX and Web Workers (described in detail in the next chapter) in
order to introduce concurrency to make the program run as fast and as smooth as possible

without impacting on the client with waiting times.

Page 74

Main Process

Start

Setup Canvas

v

Initialise Visual Grid

b

Initialise Camera and
Lighting

¥

Initialise Voxel world
{default data)

Ajax request for data

<AJAX requests

Update Loop

Render Scene

Initialize Voxel world

<Callback:

Server

F

data

¥

Make data JSON

<Post Message=

Worker Process

Friendly

e

Update Voxel Mesh |¢—

Reconsiruct data |e—|

On Work Complete |

<Raise Events>

h 4

Web Worker Event
handler

¥

Reconstruct data

¥

Marching Cube
Mesh Calculation

Y

Event handler

Make data JSOMN
Friendly

Figure 35 - On load sequence diagram

Page 75

ﬁ'

Toggle Grid

Show Images

Figure 36 - Resultant mesh model

The above image shows what we termed as an “Orb” which is constructed from a series of
images produced in Photoshop using a gradient tool with the intent of mimicking CT
sampled data of a sphere. We can now leverage the fact that we are dealing with volume
represented by the gradient as we can now adjust the threshold value by moving the slider
in the menu bar. By adjusting this, a call will be passed once again to the web worker
mentioned earlier with all the world data along with the threshold. Upon completion, the
resultant meshes for each individual voxel will be updated which can be seen below. This
technique is possible because of the darker nature as we approach the centre of the images.
This can be thought of again as mimicking the same type of images produced from an X-Ray/
CT scan. The outer layers could represent soft tissue, while the centre could represent

denser material such as bone.

Page 76

Main Process
Adjust Threshold
Update Loop
l = Worker Process
Make data JSON =PostMessage= Web Worker Event
Friendly 7 handler
Render Scene
2
Reconstruct data
Marching Cube Mesh
Calculation
On Work Complete | <Raise Event- IMake data JSON
Update Vaxel Mesh - Reconstructdata = = g oo Friendly

Figure 37 - Sequence for adjusting the threshold

eosor -]

Toggle Grid

Figure 38 Applying threshold

Page 77

11.2.1 Other examples

Figure 39 - Spiral Volume

Figure 40 Perlin Noise

Figure 41 Example of a perlin image used

Page 78

11.3 Developing the Sculpting application

11.3.1 The problem
Representing a sphere is easy mathematically and worked well in the prototypes where the

theoretical sphere to be rendered was defined as simply having a centre and radius. The
values to be used in the Marching Cube algorithm were then derived simply by determining
how far a voxel corner was from the centre of that sphere. But what happens when we
want to apply a manipulation or distortion on that sphere? How can it be now represented
mathematically? How can any material properties i.e. elasticity be applied to it? A very
difficult prospect, and well beyond the scope of what this thesis is about, mathematically

speaking of course.

11.3.2 The solution
Instead of attempting any form of mathematics, the approach to be taken is to instead

represent the base object as geometry where we can let the computer handle the maths as
appose to us dealing with the complexity. For our proposed solution, it will be made up of
nodes/vertices with connecting edges. To make the object behave more like a real world
material and have elastic properties, each connecting edge will actually be a spring model
making use of Hook’s law. Each node will have the ability to be grabbed and moved by way
of mouse selection and drag and release actions. One important point must be made here

is that the intention is none of this model will be visible to the user in the end product, for

this proof of concept it will remain visible to illustrate our objective. What should happen is
the geometry that the user sees, will that which is generated by the Marching Cube
algorithm. So sum up, its main serving purpose is to represent a distortable object that
would otherwise be impossible (within the scope of this thesis anyway) to represent

mathematically.

To make this approach work we need to return to the grass roots of what volume rendering
is all about. The geometry of the controller sphere can be thought as an object, or a patient
for that matter, being scanned in a medical scanner with the resultant sampled image slice
data being rendered as a 3D volumetric object. The exception being of course the object we

are going to scan will have its rendered output in the same place.

Page 79

The sampling and rendering process is now where this will be won or lost, the task in hand is
now to somehow produce a function to generate the correct values that can be assigned to
the voxel corners and be used to render the model. What would be ideal is, if we could

simulate the same results obtained from the stack rendering solution.

11.3.2.1 Experiment 1:
This was one the first attempts at producing the base object by making use of the prototype

example to generate a mesh by using the centre and radius approach.

Because representing a distorted sphere mathematically is far too complex. The aim is to
wrap the sphere in a (non-visible) mesh linked by springs (internally and externally) and
then manipulate the sphere by pulling nodes and having the springs represent elasticity.
After this, the plan is to use the Marching Cube algorithm to re render the sphere. This
rendering will be achieved by now testing on which side the voxel corners lie in relation to

the planes of the surface of the (non-visible) controller object.

T OB

Generate Sphere
Toggle Wireframe
Toggle Mesh
Toggle Grid

Fill nodes

1

Show nodes

>

i

K

Ny
W
oA

Create Springs

Figure 42 - Marching cube rendered sphere

Page 80

Result

Greate Springs

Application development

Springs demo

We actually abandoned this approach because of the complexity of the base sphere
generated by the marching cube algorithm. The above was easy part to generate but it is
only using the voxel corners depending on whether they were marked inside which we
determined during the original Marching Cube pass. These nodes were then connected
together with a spring joint. The image below shows the surface that the Marching Cube
algorithm renders. The next step would be to include the surface that was generated and

connect it to the nodes we produced above.

However, as it is a per voxel operation, there is a lot of resultant duplicate vertices. This
makes it more difficult than it needed to be to use the vertices to generate nodes on the

surface and connect them. Instead, of wasting too much time on this and not getting any

Page 81

return for investment, we dropped this idea in favour of the next approach which is to just

procedurally generate our own sphere thus giving more control and flexibility.

Figure 43 The complex wire frame mesh produced by the Marching Cube pass

11.3.2.2 Experiment 2:
Having abandoned the first approach because of its inherent complexity, the decision next

was to procedurally generate our own sphere as we gain the benefit of having more control
over it, as we determine how it is produced. The same idea of using springs will be applied
here again to connect the outer nodes. However, this time we will not connect the internal
volume with spring joints. A mesh for the purposes of producing volumetric data will then
be applied to the model. The final step in the plan is to then use the Marching Cube
algorithm to render the output of the data obtained from scanning this controller base
model. This scanning function will be discussed shortly as it involved its own trial and error

approach.

While it may seem counterproductive to what the thesis is all about, to have a sphere with a
mesh in place that can be spring jointed and manipulated. The idea behind the controller
sphere is that it will be of sufficiently low resolution to allow selecting and manipulating of
the nodes. The Marching Cube algorithm, which will run in the background, will then be
expected to render the object to a sufficiently high level of detail; depending of course on

the resolution we decide set on the voxel world i.e. voxel size/voxel numbers.

Page 82

I
|
I

/1
[
i

Figure 44 Calculated nodes

Producing the base sphere

Using the above adopted formula from a stack overflow response (User: Jonathan @
stackoverflow.com, 2010), we were able to generate the nodes shown in the image above.
We then implement a ‘for loop’ that generates a specified number of nodes for every

longitudinal line. This does result in duplicates at the poles which do need to be eliminated.

Page 83

From there we proceed to implement an algorithm that connects each of theses nodes as
well as calculate faces and our own custom normals as each face will make use of a ‘double’
face material for ray casting purposes. This is a computionally intense task which we need
to introduce concurrency by calling upon the web workers to alleviate. Once the web
worker returns the calculated geometry, we render it on the main process (web workers
cannot access the DOM). We also at this stage, add the faces calcuated to an octree for

efficient look up when it comes to performing the sampling process.

11.3.3 Creating spring joints using Hook’s Law
In order to replicate or at least mimic an elastic material, we connected each of the nodes of

our controller object with a spring joint connection. To implement this, we followed a
physics tutorial presented by Peter Collingridge who demonstrated the use of springs in a

Python simulation using Hooke’s law.

To summarise Hooke’s law, it states that:

Force = extension in length or displacement * Spring constant

(Collingridge, 2011)

In our example we follow Peter’s lead but make several adaptions to bring it in tune with
the 3D environment in which we are working. Below is the code used in our update method
which gets run every loop for every spring connection we have created. The following is the

sequence of what the method is actually performing.

e We calculate a force using the above mentioned formula (strength is used as the
spring constant).

e Next we calculate the Acceleration by manipulating the formula Force = Mass *
Acceleration

e We then construct new vectors consisting of the normalised direction of return (for
node 1 — the direction from node 1 to node2 and vice versa for node 2) and multiply

by the force we calculated which will then be added to the velocity of our node.

Page 84

Direction of return Direction of return

Mode 1 Mode 2

O Spring connection O

public update (delta:number) svoid |

var force = (this. length - this.getDistance()) * this. strength;

/ this. neodel.getMass();
/ this. node2.getMass():

var nl = new THREE.Vector3,
nZ = new THREE.Vector3;

nl.subVectors (this. nodel.getNodePosition(), this. node2.getNodePosition()).n
n2.subVectors (this. node2.getNodePosition(), this. nodel.getNodePosition()).n

this. nodel.update(delta, nl);
this. nodel.update(delta, n2);

this. lineGeo.vertices[0] = this. nodel.getNodePosition();
this. lineGeo.vertices[l] = this. nodel.getNodePosition();

thiz. lineGeo.verticesNeedUpdate = true;

}
public gectDiztance () shumber |

return this. nodel.getNodePosition().distanceTo(this. node2.getNodeFPosition());
}

Figure 45 - Spring update method

{

Figure 46 - Individual node update

11.4 Application of the Octree
The original intentions when developing this concept application was to use the Octree data

structure for managing all the voxels in our voxlelized world. However, this didn’t
materialise as such as we found it was easier to reference the world by breaking it up into

levels with each level consisting of an array of voxels.

Page 85

However, that did not mean that the use of this rather efficient data structure (as presented

in our earlier research) didn’t have a place in this project, in fact, quite the opposite.

During development it was found that one of the community members implemented an
Octree that integrates into THREE.JS. This structure ties in very well to the ray casting
system that is used in THREE.JS. What this meant for the project is that it reduces the
number of searches required when casting a search ray into a scene. Instead of testing the
entire scene of objects, first, only objects that lie in general direction within a specified
radius are found. Once this list is compiled the ray test is carried out against this list. This
has worked extremely well in this project and is used extensively in the sculpt concept
application for finding collisions with faces of the control object when performing a volume

sample.

11.5 Volume sampling and rendering
The key to the success of this solution will be how we sample or scan the controller object

so that we can voxelise it with the Marching Cube algorithm. This section describes the
path, through trial and error to finding the best solution to this problem. One item that is
central to all the attempts is the use of ray casting. The image on the next page is a visual
example of ray casting which is basically an intersection test. Different frameworks have
different ways of implementing ray casting, but, for THREE.js we can determine which
object was intersected through scene references. In our controller sphere, we are using
double faces so that the ray can hit either side of the face and determine an intersection.
This however presents an issue because the face has two normal vectors now which conflict
in indicating what is the intended direction it should be facing. This is why earlier we stated
that we created our own normal when procedurally generating the sphere, as we can now
apply a dot product function against the ray line to determine the ‘intended’ facing

direction.

Page 86

Figure 47 Ray cast test visualisation

Obtaining voxel corner values

Voxel corner (contains a value) Voxel

"

Intersection

So the problem next is we need values to assign to each voxel corner that reflects the
control object that was generated earlier. The idea is to somehow choose an appropriate
algorithm that will sample the amount of the controller which is contained within the voxel.
For this to work an number or criteria must be satisfied, first an appropriate value must be
assigned to each corner and secondly an appropriate threshold must be selected that will
decide where along an edge between two voxel corners an vertices will lie if there is an

intersection with a mesh belonging to the controller

Page 87

11.5.1 Approach 1
Process

Ray cast line

Mesh

/X

P

Voxel
i
o W

Mesh intersection

This approach was to ray cast at diagonals which is easy enough to implement. If an
intersection occurs, we assign distance from that corner to the intersection point as the

voxel corner value.

Result

As this was the first approach, it was almost expected from the outset that this wouldn’t
present the ultimate desired outcome, but as we need to start somewhere it formed a
foundation of how we should progress next in our attempt to voxelise our control sphere.
So to conclude, the unreliable results produced from this experimentation resulted in the
abandonment early as mentioned, but did provide an opportunity to experiment with ray

casting for sampling so it wasn’t a total loss.

11.5.2 Approach 2
Process

Page 88

Voxel corner Voxel edges

N

r

Ray cast directions

For this attempt we will adopt a simple binary approach. For each corner we will use a ray
casting technique that will cast rays in three directions and determine if there is an
encounter with the mesh. If a corner is determined to be inside we will assign a value of 0
otherwise we assign the corner a value of 1 to signify outside. For the purposes of the

Marching Cube algorithm we will pass the value of 0.5 as the threshold.

Results

A positive start but nowhere near to the desired level of detail we require. This was to be

expected if the vertex positions were always going to be places mid edge on the voxel.

As expected to gleam any sort of decent result, the controller sphere needs to be of a high
resolution if this sampling algorithm is to select appropriate values for the voxel corners.
Even at this, it becomes apparent pretty fast that this will not lead to the final desired
outcome. What follows are series of screenshots that show the outcome of this test

approach.

Page 89

E— 7

N R
‘ /“\‘fﬂ %
AL

AN

Figure 48 Low resolution controller
Figure 49 — Marching Cube output

Wik i

e aa

ﬂ"ﬂ‘ &
R A e Y AN

o

Page 90

Figure 50 High resolution controller

Figure 51 Rendered result

11.5.3 Approach 3
Process

This attempt aims to build on the work of the previous experiment but aims to extract
better corner values than just using binary 0 or 1. So, same as the previous we pick a voxel
corner and test it in its three possible directions for intersections with the controller mesh -

There will be 4 possible scenarios to be dealt with here:

0 Hits set voxel corner value to some safe number that indicates it is well outside
1 Hits set voxel corner value equal distance to intersection point
2 Hits Form a line and do a distance to perpendicular of the line calculation and set

voxel corner value equal to this value.
3 Hits form a triangle of the three points and perform a perpendicular to plane

calculation and set voxel corner value equal to this value

Page 91

Results

257300 a

Toggle Grid
Control Sphere
Create Springs

Fill Mesh
Hide All

Generate Shape

Figure 52 Result of the March Cube pass with the values acquired from the above approach

As can be seen from above, this method doesn’t produce a reliable method of volume
sampling. The result above indicates that by using this approach results in gaps between
the meshes meaning we are losing out on data. The conclusion that can be drawn from this
is perhaps sampling from individual voxels is not the best approach, but rather an attempt

should be made to adapt a global sampling method.

11.5.4 Approach 4
Process

All of the previous attempts were trying to use per voxel sampling, however if we consider
the prototype and the stack renderer, it worked well because all values were global based.
This now seems to be a better approach than the previous per voxel sampling method.
Especially looking at the roots of the use of the algorithm, taking an x-ray and sampling the
colors at the corners of the voxel, those colors are connected outside of the voxel essentially
meaning that values are global. So we should adopt and approach that attempts to build a

global image and render them similar to the stack render solution.

Page 92

To build our images, we are essentially going to have to x-ray our controller object similar to
how a patient gets scanned during a medical assessment. We will again make use of ray
casting and our specially built control object that has double faces, using our custom

defined normal to tell the true direction of the face.

Below is an illustration of a ray cast against our control object. The entry and exit is marked

below with the particle effect, it is this information we wish to collect and process.

Figure 53 - Visualisation of the entry and exit marks of a ray cast against the control object

Page 93

Figure 54 the results of the sampling

The above shows the result of this approach. The sampling is only being taken from one
direction. What is notable is the loss of detail when we approach the extremes of our
control object. Also, all we have captured here are points which by themselves are not

much use i.e. we are not determining volume.

The next attempt at this we will take more samples from different directions. These will be
taken with 2 on the horizontal (front and side) and 1 from the vertical. Along with this, we

will trace the route as it passes through a volume and store this.

The series of images below illustrate what should happen. This time we are including a
secondary control object that has its normal facing inwards. The outcome we expect from

this is a volumetric sphere with a hollow core.

Page 94

Figure 55 Visual aid of ray casting through a volume that has a hollow core

Figure 56 Resultant volume trace which is stored

Page 95

e A A Y B Y

D K Y S A
o A

Figure 57 Application shows the lines denoting volume

The above taken from our application now shows all the captured trace lines as it passed through

the volume.

Page 96

Figure 58 Visualisation of captured data as an image stack

Corner 1 Internal is marked External is marked

Corner 2
Negative Positive

Value = - (Distance A) Value = + (Distance B)

L Distance A | Distance B b

Once we have completed the volume sampling step. We can now use this information to

render using the Marching Cube algorithm. The approach taken is to first build the case for
a voxel by determining which corners are inside and which corner are outside. This is done

by examining if a corner lines on one of the collected trace lines i.e. the red lines.

Once we have our Marching Cube case, we must perform the interpolation to determine
where to place a vertex. The diagram above shows how we establish a value for each
corner. We examine our collection of captured volume traced lines (red) and find the line
that aligns with the edge which connects the two voxel corners under consideration (corner
1 & corner 2 shown above). The value that is assigned to the corner is the shortest distance
it takes to get to the edge of that matched volume trace line. If that corner is within the
volume (lies on the red portion) we mark it negative to signify it is inside. If it is external
(lies on the black) we mark it positive which signifies it is outside. To ensure correctness,

the absolute values of the two corners should add up to equal the voxel width.

These are the values now passed to the Marching Cube algorithm, with a threshold of 0 to
denote the surface or placement of a vertex. The rendering in progress can be seen in the

next image.

Page 97

Figure 59 The Marching Cube rendering process of the standard untouched controller

11.5.4.1 Extrusion demonstration
The following now is a demonstration of the extrusion functionality taking place. The

captions under the images explain what is happening here.

Figure 60 - We begin with the base controller

Page 98

Figure 61 - We apply spring joints and grab and extrude a node outwards

—
METANN
| i
il ! LI =
— 1 I

Figure 62 - We apply the volume sampler which results in the lines traced here

Page 99

&

Figure 63 - We apply the Marching cube algorithm to the acquired volume data to render the above output

11.5.4.2 Compression demonstration
This follows the same procedure as above except we press the nodes inwards before

applying the sampler and rendering with the Marching Cube algorithm.

251500 u
Togale Grid
Controller Sphere (L)
Hide Proc L .
Controller Sphere (S)
Hide Proc 5
Create Springs
Hide Vol
Sampler
Auto cursor \
Step cursor
debug info Volume flattening
Cursor tracker = 10
Cursor Level =2
5B FPS (2-61)

11.6 Results

11.6.1 What worked well?
The volume rendering application worked extremely well, we now have an application that

was written once and is capable of being distributed to multiple devices as can be seen from

the below image. Although the 2 year old android smart phone does require more time

Page 100

than the desktop/laptop to process the data as well as render the volumetric model. It must
also be noted that no effort was made to optimise for mobile devices. So, using touch

control doesn’t behave always as it should.

Figure 64 — Same application on laptop and Android smart phone

From a sculpting perspective, we had mixed results but regardless, still established an
excellent foundation to progress on. Mesh flattening seems work very well as was
demonstrated above. This was mainly due to the fact that we are pushing into the volume
and not resulting in any ray sampling lines being caught between voxels which forms the

next part of our discussion.

11.6.2 What didn’t work so well?
As mentioned, mesh extrusions posed a bit of trouble, which is demonstrated in the below

series of images. The issue arises primarily if a vertex is pulled in such a fashion that no
collisions occur with the voxel edges which are the primary source for capturing volumetric

data.

Page 101

Figure 65 - What looks like a good extrusion?

Gap in mesh

p5 (B0, MEELPRY

Figure 66 — Sometimes result in gaps in the mesh

Page 102

No edge intersection

Controller object

BN

distortion

Figure 67 - Visualisation of the source of cause

11.6.3 What could be tried next?
For the stack rendering application, it would be nice to develop it further to maybe handle

more detailed images such as CT scan images. This would obviously require increasing the
resolution and require further optimisations as well as leveraging more out of web workers

for concurrency.

For the sculpting application, it would be nice also if we could also introduce a larger
resolution to help alleviate some of the issues we were having above. Along with that, it
would be interesting to also investigate the possibility of introducing ray tracing as part of

the rendering process.

11.6.4 Applications of the work
One major application for this type of application lies in the area of 3D printing or additive

manufacturing as it also referred to. In an article written for the Wall Street Journal, the
author quotes a senior figure of General Electric who states that “Manufacturing is
undergoing a change that is every bit as significant as the introduction of interchangeable
parts or the production line”. One of this changes includes the use of additive
manufacturing where it possible to create a product in a single pass without the need of
traditional methods such as using milling machines or casting. This also offers the

advantage in not having to deal with the problem of waste or the need for assembly.

Page 103

The following figures the author quotes are for America but give a good reflection of the

way manufacturing with 3D printing is going.

“27% Annual growth rate of 3-D market over the past three years”
“$2.2b Worldwide sales of 3-D printers and services 2012”

- “$10.8b Projected sales of 3D printers and services, 2021”

Also according to that same article, even Nike are finding the implications of employing 3D
printing by having less waste and reduced delivery costs. The profound consequences of
this new technology for Nike was “Almost seemingly out of the blue, the reason for making
shoes in low-wage countries begins to evaporate and the advantages of locating the

machine closer to the customer—in part for faster delivery—begin to loom much larger”.

This type of manufacturing has now come so far that in an English university, they have
managed to get a printer to self-replicate. The consequences being that it may be possible
to buy a printer and spawn more printers from it, only having to rely on consumables

(Koten, 2013).

Thinking of other applications for this type of solution, since we are developing this for the
web environment, it opens up the possibility of having an online create and share
community similar to that on offer by unity’s asset store. It could be possible to develop
this further to have backend support for handling storage and payments if the venture was

to be ever monetized.

Another possible application for this could be for use in a game engine that uses voxels
instead of traditional mesh approach. In traditional game engines a meshes position is
update and rendered every game loop. In a voxel engine, it would be a case of switching
voxels on or off or manipulating their properties i.e. color or opacity. It all depends on the
effect wanted, however the more detail that is required as encountered here, can have an

impact on performance.

Page 104

12.0 Developing for the Web Environment

12.1 Developing with JavaScript

We began the development stage and produced the early prototypes using pure JavaScript.
JavaScript is described as being the language of the web. An even better description is it “is
a high level, dynamic, un-typed interpreted programming language that is well suited to

object orientated and functional programming styles” (Flanagan, 2011).

The language attempts to be Object Oriented through simulating/mocking inheritance by
use of the prototype. The following is an example taken from the Mozilla Developer
Network page describing object oriented programming in JavaScript. The Person class here
implements a walk and a say hello function. The student inherits then from the Person class

and overwrites the Person’s say hello while implementing their own ‘say good bye’ function.

¢ Person.prototype.walk = function

alert I am walking!"®

7 Person.prototype.sayHello = function

alert hello
// define the Student class
function Student
Call the parent constructo

= new Person

rrect the or pointer because it points to Person

Student.prototype.constructor = Student
/ replace th
24 Student.protot
alert('hi,

sayGoodBye = function

var studentl = new Student
1 studentl.sayHello
35 studentl.walk
s studentl.sayGoodBye

/{ check inheritance
alert(studentl instanceof Person /I true
w alert(studentl instanceof Student [/ true

(Mozilla Developer Network, Introduction to Object-Oriented JavaScript, 2014)

Page 105

The student class is then instantiated and the functions tested producing the following

outputs:

Function call Output

studentl.sayHello() “hi, | am a student”

studentl.walk() “I am walking!” as implemented by Person
studentl.sayGoodBye() “goodbye”

As mention, JavaScript is also able to behave as functional programming language by being
able to take functions as parameters or return them. The following example from our own
application shows how we are able to pass a comparator function to a ‘contains’ function

which we are using to test if an object is contained in collection.

Figure 68 - Higher order function in JavaScript

JavaScript has come a long way since the days of making scrolling text and fancy menus and
today by leveraging Googles V8 engine, JavaScript has extended itself into being capable of
offering itself as a highly scalable server with the advent of Node.js (Hughes-Croucher &

Wilson, 2012).

However, despite its maturity, it still does come with its idiosyncrasies.

Figure 69 - Some of JavaScript’s interesting features

Some of the pitfalls in JavaScript discovered in the early stages were the lack of type safety.
This became noticeable with the rapidly growing complexity of the project and prompted a
move to try an alternative system that could address this issue. With a tight deadline and
some quick investigation the final choice came down to adopting Typescript into the project,

other choices would have included either Coffee Script or Google Dart. Coffee Script was

Page 106

not chosen because of its unusual syntax while Dart is not yet widely adopted raising the

question of support. Typescript won through its familiar C#/Java like syntax.

12.2 The move to TypeScript

ypeScript

REVIEW

Typescript is an open source initiative developed by Microsoft to aid programming teams
that must build and maintain large scale JavaScript projects. Typescript in large part is a
syntactical sugar for JavaScript but offers the benefit that always compiles back into
JavaScript while also allowing a mixture of JavaScript (Microsoft, 2014). One of the key
benefits which can be quickly deciphered form its name is that it offers static typing. This
combined with a powerful IDE such as Visual Studio or WebStorm allows the developer to

experience real time compilation and alerts to any type defects they may be introducing.

Typescript replicates a lot of the features that are available in Object Orientated languages
by introducing variable visibility with public and private, the ability also to have interfaces

which allows for creating contracts.

Some other neater features of the language is that it implements generics (<T>) as well as
making use of the lambda symbol (=>) which .Net programmers are familiar with for

leveraging the power of functional programming which JavaScript implements by default.

What follows next is a simple example of Typescript followed by its compiled output to
JavaScript. One could almost be forgiven for thinking the example was written in Java or C#

with its close syntactical resemblance.

Page 107

module BusinessLogic |

export interface IPerson {
getlame () : string:

export class Perscn implements IPerson |
private name:string:

constructor (name:string) |
thiz. name = pame;

public getlams() istring |
return this. name;

export class Employee extends Perscn |
private jobRole:string:;
private annualSalary:number:

constructor{name:string, jokRole:string, aznoualSalarv:number) |
super (name) ;
thiz. jobRole = jobRole;
this. anmialSalary = anoualSalary;

public getRole():string |
return this. jobRole;

public gethnnual3alary() :number |
return this. annualSalary;

public getEmployesDetails():string {

return "Hame: " + this.getllame() +
"\nRole: " + this.getRole() +
"\nAnnualSalary: " 4+ this.gethnnualSalary():

Just explain some of the unfamiliar key words, a ‘module’ can be thought as being

namespace in .Net or package in Java.

The use of ‘export’ before a class is for visibility to other classes, almost like making a class

public.

The following now is the compiled JavaScript output from the Typescript compiler (v1.0).

Page 108

var BusinessLogic:
{function {(BusinessLogic) {
var Perscn = (function () |
function Perscn(name) {
thi=. name = name:
}
Person.prototype.getlame = function () |
return this. name:;
1
return Perscon;
RV

Businesslogic.Person = Person;

var Employee = (function (_super) {

_ extends (Employee, _super):

function Employee (name, jobRole, annualSalary) |
_super.call (this, name):
this._ jobRole = jobRole:
thi=. annualSalary = annual3alary;

}

Erployes.prototype.getRole = function () |
return this. jobRole:

1

Erployes.prototype.getinnualSalary = function () |
return this._ annualSalary:

1

Ermployes.prototype.getEmployeeDetails = function () |
return "Name: " + this.getName({) + "\nRole: " +
this.getRole () + "\nAnmualSalary: " + this.getAnnualSalary()
1:

return Emplovee:

1) {Person) ;
Businesslogic.Emploves = Employee:
1) (Businesslogic || (BusineasLogic = {})):

The one caveat with using Typescript is that everything must be declared to avoid the
compiler giving errors even when using external libraries. This can circumvented by
declaring the type as “any” in advance or acquiring what is known as a type definition file
which is even better as it declares all the methods of the external library ensuring type
safety when using that library. An excellent open repository exists on GitHub titled
‘Definitely Typed’ which provides these typed files for most popular libraries, the THREE.js
library here makes use of this typed file to allow it be used without generating compiler

errors. https://github.com/borisyankov/DefinitelyTyped

Typescript also supports generic’s which is demonstrated in this custom collection that was
created for the purposes of this implementation. The purpose of this class was to extend an

array adding additional functionality and so the choice was to create a custom solution.

Page 109

export class Collection< T > |
private array:frray < T »:

constructer() |
this. array = []:

1

public zdd{item:T}) :wvoid |
this. array.push(item);

1

public get{i:number):T [
return this. array[i]:

1

public length() rnumber [

return this. array.length;

}

12.3 Web Workers
JavaScript by itself is essentially runs as a single process all in its own thread. This was never

a problem before, but as web development matures, it is proving more and more to being
capable of delivering rich content similar to that which is normally experience in native
applications. Prior to the introduction of multi-processing in JavaScript, a browser trying to
handle a large volume of work would warn the user through alert messages that it is under
heavy load. This, from a user’s perspective is undesirable as they won’t know if this is
meant to happen or if they are under attack from a malicious script. This problem was
encountered early in the development phase and the bottlenecks became apparent and so

it became apparent that the introduction of concurrency was needed.

Workers are created in separate files and are run as a separate thread/process. Web
Workers also have the ability to spawn other workers to further improve the processing
ability. It utilises message passing by use of JSON or simple objects and communicates
asynchronously through the use of events. This is an asynchronous process so the main
thread will continue and the output from the worker process is dealt with through an event.
Web Workers have no access to the DOM or the main process which is why there is a shift in
thinking in that typical OO languages have access to objects outside their process but with
Web Workers the only means of communication are through the use of messages

(Bidelman, 2010).

Page 110

The following is a basic implementation of a web worker. It should be noted that the
worker itself is created in a separate file and is loaded at run time. The two processes

communicate by way of events, ensures that this is a non-blocking process flow.

<html>
<head>
<titlesWeb worker example</title>
</head>

<body>
<scripts
var worker = new Worker("worker.js");

worker.onmessage = function(e) {

console.log(e.data);

worker.postMessage({message : "update", coords: {x: 1 , y: 2}1);

</=cript>
</body>
</html>

Figure 70 - Worker instantiation and call

onmessage = functionie){
if { e.data.message === "update")

{

postMessage({ newX : e.data.coords.x * 5, newY : e.data.coords.y * 5 });

Figure 71 Background worker script

As Web Workers are based around message passing as appose to object passing, care is
needed to what information can be passed. What has been encountered during the
development phase is that there was a need to create an “adapter” that basically is a
slimmed down version of the object that requires processing or information that the
threaded process requires. This is necessary as JSON doesn’t have the ability to convert
complex objects that have circular dependency. Basically this means having composite
objects (A has a B) can’t be converted so there is a need to create some form of adapter that

passes only the need to know information.

It should also be noted that Web Workers do not have any access to the main “window”
meaning they are completely isolated from accessing any variables in the main process or
the Ul. This in some ways is good in that there is little need to worry about issues that

normally need to be considered when performing concurrency such as thread safety and

Page 111

locking activities, however, it does need a bit of thought in its implementation (Mozilla

Developer Network, Using web workers, 2014).

Main Process Worker

Event + arquments

| Cvemtrarguments

Main process Event Processing
continues

Event + arguments

12.4 Deployment through GitHub
For this project as well as being developed locally, we are going to make this project live to

the world as it allows for us to experience the various delays that go hand in hand when
content is being passed across continents rather than the instantaneous delivery

experienced on the local loop.

GitHub, where the source repository is being hosted also has a facility for hosting basic
project pages related to that repository. This works perfect for us as we are only delivering

HTML, CSS and JavaScript with the client doing all the rendering on their side

To create this, all that is needed is create a branch titled ‘gh-pages’ and because this was a
web project anyway, this became the main branch of our project. To see any changes, all
that was needed is to commit to main ‘gh-pages’ branch for them to go live. GitHub
provides an address for your project which usually follows the line of

http://username.github.io/repository.

Page 112

12.5 Running the project locally
Because the project uses AJAX to request certain files, the browser will not allow for it to

happen on a local machine because of Cross-Origin Resource Sharing (CORS). This is
basically when a request is being made for content from a domain that is not the same as
which the domain from which the originating request is being made from (Mozilla
Developer Network, HTTP access control (CORS), 2014). In order to run the project locally,
we can instead run a local HTTP server. The easiest one to install and which will be
described here actually comes bundled with Python which is available from

http://www.python.org/downloads/.

As mentioned, first download and install Python (2.7 preferred) and ensure that its path

gets added to environment path which is located in Windows system settings.

B System
T 8 ¢ Cunbiol Panel » System and Secunily » System
Contrel Panel Home System Properties
W Device Menager Computer Home | Hardwaen | Advaoced | Symem Prosncson | Remon
W Remore setings ou must be logged on 83 an Admnistrator to make most of these changes _i z
System protection A fir 1
i fr— . Window
9 Rehmnced system whtings Visunl effectn, prcraser achndkling, mesmory Lange and vitunl mesary
Enwiranment Variables
Settings
Ve Ficlies
Desktop ssttngs related to your signan
P " :
e arable rame: Famh
Variate vahue: V0 T By TR Pr ot |
Seavt o el Rncowny —_ &
System eartan, ystem lakure and debuygeng infomaton oK Canerl)
Settinga
»
Envronment Varabies

oK Cancel

Viindows Update

Next, once this is done, navigate to folder from which the server is to be launched from (this

will effectively become the root folder which will be indexed in the browser).

Run the following command form the command line: python —m SimpleHTTPServer

Page 113

=N CA\Windows\system32\cmd.exe - python -m SimpleHTTPServer = = “

C:sUzerssWilliamsDocuments™~GitHub~Thesis>python —-m SimpleHTTPServer
Serving HTTP on A.A.8.8 port 88608 _._._

Finally, point the browser at address given and the contents of that folder will be displayed

in the browser. If it detects an ‘index.html’ then that will be the page that will be displayed.

Page 114

13.0 Conclusion
So as we approach the end, we have uncovered quite a lot on our journey to implement a

volumetric sculpting application in the browser using WebGL. What is left for us now is to
draw a conclusion on the research questions that were raised and which have largely been

answered over the development phase of this thesis.

Is WebGL a viable option for developing serious applications?

Having WebGL certainly allows for the creation of feature rich applications or games for the
web browser, however, saying it is viable compared traditional platforms presents a bit of
debate. When we create desktop applications say in Java, we deploy to the Java Virtual
Machine, if we develop in C# (mono withstanding) we are deploying to the .Net
environment. Both of these have the ability to handle the interaction with the hardware
using the JVM or CLR. So, under normal circumstances you expect the application to work
out of the box. However, developing for the web is far more volatile. We are not simply
developing for the browser but in fact several. We currently have Chrome, Firefox, Internet
Explorer, Opera and Safari. Then we have to consider the mobile browsers which are their
own kettle of fish. Browser developers strive to adhere to web standards but the fact of the
matter is it occurs at different rates of development and different methods of
implementation for each browser. This is what makes developing for every browser a scary

prospect.

How viable is JavaScript, being a dynamic language, for creating large scale applications?

Our experience was that it wasn’t, however that is not a general statement as there are
plenty of developers who are well versed in JavaScript that would be confident enough to

tackle large projects using JavaScript as the primary langauge.

However, coming from a static typed background, the transition and sense of security
offered by TypeScript made it a good choice for someone who was new to web

development to be confident that they are writing good type safe code.

Page 115

How can JavaScript deal with large computations, how can bottlenecks be dealt with?

JavaScript runs largely as a single process even AJAX is not truly asynchronous, it just lets the
main process continue and only reacts by invoking a call back when the server returns. The
draw backs of running large computational tasks definitely showed when running on the
same process. However by introducing web workers, we found significant improvements by
being able to have volumes of work broken down and off loaded to worker threads to

process without impacting the main process.
Can a volume sculpting application be implemented in WebGL?

The results of our proof of concept application would suggest that it is possible. Although
there is quite a bit more work and hopefully we will be reopened following the completion
of this thesis. It would be hoped that further optimisations can be introduce in the solution
obtained as well as leveraging the power of JavaScripts ability of concurrency to deliver a

more streamline end product.
Can the use of WebGL help in avoiding a vendor lock in?

WebGL certainly can, as the only requirement is a compatible browser, a modern machine, a
text editor and some basic knowledge to create fully feature rich 3D application. A danger
that exists lies with changing web standards, what works today may not work in a years’
time. Also a lot of browsers are still playing catch up with adhering to the WebGL standard.

So, it’s a little early yet as to whether a commitment be made to stick with WebGl.

Is THREE.JS a good choice of wrapper library for developing 3D applications? Can it boost

productivity over using pure WebGL?

Yes, the contributors to this library have put an extra ordinate amount of effort into
abstracting and creating wrappers of common graphical functions that are provided by
WebGL. To think of producing the same application we produced in raw WebGL code, well,

we would rather not think about it to put as mildly as possible.

Page 116

When creating a volumetric model, how can the volume be manipulated and rendered?

We found using Hooke’s law, we were able to mimic elastic properties rather well. However
we only implemented this on the surface mesh for the proof of concept stage so we can’t
truthfully say that this would work if it was connecting the internal volume also, but there is

no reason to suggest why it shouldn’t.
Can the use of spatial data structures be used improve performance in this project?

Originally we had intended on using the Octree to store the voxels created in our volumetric
world, however that didn’t pan out as we found dealing with levels (world array contains a
array of voxels) to be easier. However, the use of Octrees played a large part in the use of
ray casting and sampling for our controller objects to produce volumetric data. We were
able to store a reference to the faces in the Octree structure and that use it for efficient ray
cast tests. Although we have no metrics to back up this statement, it is clear that by
reducing the amount of objects by location, fewer tests were required of the ray cast. This
and the earlier referenced research on Octree’s, suggest yes, that spatial data structures can

be used to improve performance in this project.

What are the possibilities with using volume Rendering/Sculpting?

We uncovered quite a few during our research but one of the more interesting possibilities
included the latest phenomenon of 3D printing which is “possibly” going to revolutionise the
manufacturing industry. We also looked at the possibility of setting up an online create and
share venture. Finally, we looked at the possibility of applying this to developing an online
game engine that uses voxels and the marching cube algorithm instead of traditional mesh

modelling approach.

So, is there a future in WebGL?

One final comment on the future of developing with WebGL for interactive content on the
web is, from a personal point of view, an issue that needs to be examined is loading times
for large projects. Having looked at a number of Three.js/WebGL examples, a lot of them
suffer from long download times (testing on 3Mb broadband). A question that has to be

asked is how patient will the client be to await deliver of content? A suggestion is possibly to

Page 117

have some interactive content while waiting or possibly only load content progressively that
is needed.

To get an industry professionals opinion on the matter of the future of WebGL we make
reference to comments made by John Carmacks the co-founder and former employee of id
software who now currently heads up Oculas rift development. John speaks from an
optimisation point of view, but he makes references to writing high performance graphic
applications using JavaScript as almost being “offensively wrong”, although the comment
seemed meant in jest. Speaking of the future of delivery of content via the web, he seems
to favour the cloud for delivering value (QuakeCon2011, 2012). All that remains to be seen
is he right and is this just another fad. Although as this conclusion was been written, Unity,
one of the more popular game engines available, have announced that in their Unity 5 game
engine that they intend to support porting to WebGL which indicates at least in their eyes,
WebGL has a future (Echterhoff, 2014).

Page 118

14.0 Appendix

14.1 UML Diagrams

' J! Geometry
v

<<interface>>
ILine
THREE.Vector3
+ start: Geometry.Vector3Extended
+ end: Geometry. Vector3Extended
Extends
+ constructor(start: VectordExtended, end: Vector3.Extended)
+ getDirection(): THREE.Vector3
Vector3Extended + equals(other: Geometry,Line): boolean
)
+ constructor (X7 : number, y7? : number, z7 : number) U:s"
+ equalsWithinTolerence(other : THREE.Vector3, tolerence : number :
Line

+ start: Geometry.Vector3Extended
+ end: Geometry.Vector3Extended

+ constructor(start: Vector3Extended, end: Vector3.Extended)
+ getDirection(): THREE.Vector3
+ equals(other: Geometry,Line): boolean

GeometryHelper

+ calculateDistanceBetweenTwoVectord(origin : THREE . Vector3, target : THREE.Vectord) : number

+ vectorBminusVectorAl b: THREE.Vectord, a: THREE Vectord) : THREE. Vectord

+ isBetween(a: THREE Vector3, b: THREE Vector3, c: THREE Vector3) : boolean

+ shortesiDistanceBetweenTwoVectord(point : THREE Vector3, v1: THREE Veclord, v2: THREE Vecior3) : number

THREE.Mesh

Extands

+ positionRef: Array<Geometry.Node>

+ _scene : THREE.Scene

+ _normal : THREE Vectord

+ _lineGeo : THREE.Vectord

| _lineMaterial : THREE LineBasicMaterial

i+ constructor (scene : THREE.Scene. gea : THREE.Geometry, mat: THREE.MeshNormalMaterial)
i+ updateVertices() : void

i calculateMarmal({ inverted : number) : void

- gethormal() : THREE.Vectora

I+ togaleMarmalVisbility() : void

Page 119

<<lnlerface=>
1Spring
+ updaie{ delia : number } THREE.Mesh
Use Extands
Spring Node
- _node1 : Node - _mass : number
- _node2 : Node - _velocity : number
- _length : number - _neighbourhoodNades : Callection<Node>
- _distance : number
- _strength : number + constructar
neGeo : THREE.Geometry + getld{) : number
_line : THREE.Line +selMass : number
- _visible : boolean + getVelocity : THREE Vectord
+ sefVelocity { velocity : THREE Vector3) : void
+ constructor(scens : THREE.Scene, node1: Node, node2 : Node, strenght : number, length : number) +addToNeighbourhoodModes (node : Node) : void
+ update (delia : number } + getNodePosition() : THREE. Veclord
+ getDistance(} : number + setNodePostion(postion : THREE.Vectord) : void
+ update(delta : number, force : THREE Vector3) : void
<<Inferface=> <<inlerface>> <<lnlerfaces>
GridaD lterator<T> IContainer<T>
+liH: THREE Line + hasMexi(} : boolean + createlierator() : Merator<T>
+liV: THREE.Line +next{) : T
: N
Use Use
GridCreator Concretelterator<T> Collection <T>
-_geo: THREE.Geomelry - collection : Array<T> - _array : Array <T>
- _color : number - position : number
- _gridMaterial - THREE LineBasicMaterial + constructor (}
- size : number + consirucior { array : Array <T>) + add(item : T) : void
- _blockSize : number +hasNext() : boalean +addUnique(item : T} :void
+next{): T +get(i:number):T
+ consiructor{wSize : number, bSize : number, gridColor? : number) + length () : number
+ buildAxisAligned2D Grids() : THREE.Geometry + makeUnique() : void
+ build3DGrid : Grid3D + createlierator() : lierator<T>
+ contains(value : T, equalsFunction: any) : boalean

Page 120

n? Voxels
*

VoxelCornerinfo

- _id :string

- _inside : boolean

- _position : THREE.Vector3

- _value : number

- _connectedTo : Array <VoxelCornerinfo>

- _containedinRayLine : Geometry.Collection<Geometry.ILine>

+ constructor (id : string)

+getld () : siring

+ getisinside() : boolean

+ setlsinside(isinside : boolean) : void

+ setPosition(position : THREE.Vector3) : void

+ getPosition() : THREE.Vector3

+ getValue{) : number

+ setValue(value : number) : void

+ getConnectedTo() : Array<VoxelCornerinfo>

+ setConnectedTo(points : Array <VoxelCornerinfo=) : void

+ setVoxelValueAsDistance ToSpeciliedPosition(position : THREE.Vector3) : void
+ isPointContainedinAnyRayLines (aliTheHorizontalLines : Geometry.Collection<Geometry.ILine>, allTheVeriicalLines : Geometry.Collection
<Geomeiry.ILine >) : boolean

+ isPointContainedinRayLine(rayline : Geometry.ILine) : boolean

+ getAllContainingRayLines() : Geometry.Collection<Geometry.ILine>

Verts VoxelState2
+ PO : VoxelCornerlnio - _mesh : THREE.Mesh
+ P1 : VoxelCornerinio - _centerPosition : THREE.Vector3
+ P2 : VoxelCornerinfo - _blockSize : number
+ P3 : VoxelCornerinio - _verls : Verls
+ P4 : VoxelCornerinio
+ P5 : VoxelCornerlinfo + constructor (center : THREE.Vector3 , blockSize : number)
+ P6 : VoxelCornerlinfo + getCenter() : THREE.Vector3
+ P7 : VoxelCornerinio + getVerts() : Verts
+ getMesh() : THREE.Mesh
+ constructor() + setMesh(scene : THREE.Scene, mesh : THREE.Mesh) : void
+ calculateVoxelVertexPositions() : void
+ calculateVoxelVertexValuesFromJSONPixelDataFile (voxPos: number, voxivl : number , data : any) : void
+ setVertexValues() : void
+ resetVoxelValues () : void
Level + setConnectedTos() : void
+ toggleMesh() : void
- _level : Array<VoxelSiate2>

+ constructor{)

+ addTolLevel (vox : VoxelState2) : void

+ getAllVoxelsAtThisLevel() : Array<VoxelState2>
+ getVoxel(voxel : number) : VoxelState2

VoxelWorld

- _sceneRef : THREE.Scene

- _worldSize : number

- _voxelSize : number

- _voxelPerLevel : number

- _stride : number

- _numberlevels : number

- _level : Level

- _worldSlim : Array <Array <any> >
- _levelSlim : Array <any>

- _worldVoxelArray : Array <Level>
- _start : THREE.Vector3

- _labels : Array<THREE.Mesh>

- _data : any

+ constructor(worldSize : number, voxelSize : number, scene : THREE.Scene, data?: any)

+ getWorldVoxelArray() : Array<Level>

+ getSlimWorldVoxelArray() : Array<any>

+ getLevel(level : number) : Level

+ getStride() : number

+ getNumberOfVoxelsPerLevel() : number

+ getNumberOfLevelsinVoxelWorid() : number

+ buildWorldVoxelPositionArray() : void

+ setNewVoxelWoridDataValues(data : any) : void

+ createLabel(text : string, position : THREE.Vector3, size : number, color : siring, backgroundColor : any, visible : boolean, backgroundMargin? : number) THREE.Mesh
+ clearLabels() : void

+ update(camera : THREE.Camera, visible : boolean) : void

+ projectintoVolume(projectiondirections:Array<T HREE. Vector3>, projectionOriginations:Array<THREE. Vector3>,
controllerSphereReference: Array<Conirolier. ControlSphere>):Array<Geometry.ILine>

+ toggleVolumeVisibility() :void

Page 121

MarchingCubeRendering

+ processWorkerRequest(data : any) : any

+ MarchingCube(voxel : VoxelState2, isolevel : number) : THREE.Geometry

+ MarchingCubeCuslom(voxelRef:Voxel.VoxelState2, horizontalLines:Geometry.Collection<Geometry.|Line>, verticalLines:Geomelry.Collection<Geometry.ILine>,
worldSize:number, blockSize:number, material: THREE MeshPhongMaterial) THREE.Mesh

- computeVoxelMesh(vertexlist : Array <any>. cubelndex : number) : THREE.Geometry

+ CalculateAValueForEachVertexPassedin(ct:Voxel. VoxelCornerinto, c2:Voxel. VoxelCornerinfo) -THREE.Vector3

+ VertexInterpolateCustom(threshold: number, corner1: VoxelCornerlnfo, corner2: VoxelCornerinio) : THREE.Vector3

+ Vertexinterpolate(threshold:number, p1pos:THREE.Vector3, p2pos:THREE.Vector3, v1Value:number, v2Value:number): THREE.Vector3

Page 122

JQueryHelper

+ getScreenWH(id : string) : Array <number>
+ appendToScene(id : string. renderer : THREE.WebGLRenderer) : void

; a 2- Imaging

<<Interface=> <<Interfaces>
IHorizontallmageSlice IVerticallmageSlice
+ top: HTMLCanvasElement + near : HTMLCanvasElement
+ bottom: HTMLCanvasElement +far : HTMLCanvasElement
CanvasRender

+ drawCanvas(name:siring, arrayOfLines:Array<Geometry.ILine>, translate To:THREE. Vector3, orientation:number, drawGrid:boolean, worldSize:number,
blockSize:number): HTMLGanvasElement

+ drawlmage(canvasiD:string, image ToSuperimpose:any) : void

+ drawlmage?2(canvas : HTMLCanvasElement, imageToSuperimpose: any) : void

+ drawAllimages(arrayOfHorizontalSlices:Array<IHorizontallmageSlice, arrayOfVerticalSlices:Array<IVerticallmageSlice>, horizontalElem|D:string,
verticalElem1D:string):void

+ clearAllimages(horizontalElemID:string, verticalElem!D:string):void

a? Controller

<<Interface>>
ISphereSkeleton

+ points : Array<THREE.Vector3>|
+ lines : Array<THREE.Lines>

ControlSphere

- _id:number;

- _n:number;

- _m:number;

- _radius:number;

- _scene:THREE.Scene;

- _nodeSize:number;

- _nodeVelocity. THREE.Vector3;

- _nodeMass:number;

- _nodes:Array<Geometry.Node>;

- _faces:Array<Geometry.MeshExtended:;
- _octreeForNodes:any;

- _octreeForFaces:any;

- _spr n:1Spr n;
- _alreadyGenerated:boolean;

+ constructor(id:number, segments:number, radius:number, scene:THREE.Scene, size:number,
veiocity THREE. Vector3, mass:number)

+ getNodes():Array<Geometry.Node>

+ getSphereSkeleton() : ISphereSkeleton

+ getOctreeForNodes() : any

+ getOctreeForFaces() : any

+toggleVisibility() : void

- generateSphereVerticesandLineConnectors() : void

+ generateSpherey) : void

+ calculateFaces() : void

+ caleulateMeshFacePositions| particles : any, segments : any) : Array<any>
+ addFaces(verts : any) : void

+ update (inverted : number) : void

Page 123

4 ¥ GUIUTILS
R |

<<interfaces>>
ICommand

+ Execute(): void

+buttons : any

+ constructor()

+ anButtonClick(b : GUIUTILS.Button) : void
+ addButton(button : GUIUTILS.Button) : void

GuI

Button

+ ld: string

+ Name: siring

+ Tooltip: string

+ Command: ICommand

+ constructor(id : string, name: string, tooltip: string, command: |Command)

InfoViewModel

+ GursorPos : any
+ CursorLvl : any
+ DebugMsg : any

¥ Implementation
4

T ICommand

T IGommand

T IGommand

TogyleGridCommand
- _sculpt2 : Sculpt2

+ constructor(sculpt : Sculpt2)
+ execute() : void

MoveCursorCommand

- _sculpt2 : Sculpt2

- _shouldMove: boolean
- _timeout : any

- _wait: number

+ constructor(sculpt : Sculpt2, wait :
number)
+ execute() : void

MoveCursorindividuallyCommand
- sculpt2 : Sculpt2

+ constructor(sculpt : Sculpt2)
+ execute() : void

T ICommand

T ICommand

- sculpt2 : Sculpt2

+ constructor(sculpt : Sculpt2)
+ execute() : void

GenerateLargeProcedurallyGeneratedSphereCommand

Gener ir
- sculpt2 : Sculpt2

+ constructor(sculpt : Sculpt2)
+ execute() : void

T ICommand

dProcedurallyGener ¢

T ICommand

Cr eenNodes|

- sculpt2 : Sculpt2

+ constructor(sculpt : Sculpt2)
+ execute() : void

- sculpt2 : Sculpt2

+ constructor(sculpt : Sculpt2)
+ execute() : void

TakeHVslicesCommand

Page 124

T ICommand

ToggleVolumeVisibilityCommand
- _sculpt2 : Sculpt2

+ constructor(sculpt : Sculpt2)
+ execute() : void

T ICommand

ToggleControlVisibilityCommand

- _sculpt2 : Sculpt2
- _cont : ControllerSphere

+ constructor(sculpt : Sculpt2)
+ execute() : void

Sculpt2

+ GlobalControlsEnabled :boolean;
+ Worker:any;
+ Clock:THREE.Clock;

- _controlSphere: Controller.ControlSphere;

- _controlSpherelnner : Controller.ControlSphere;
- _gui:GUL;

- _renderingElement:any;

- _btmCanvasScan:any;

- _topCanvasScan:any;

- _camera:THREE.PerspectiveCamera;

- _cameraControls:any;

- _renderer:THREE .WebGLRenderer;

- _scene:THREE.Scene;

- _stats:any;

- _screenWidth:number;

- _screenHeightnumber;

- _plane:THREE.Mesh;

- _grid:Geometry.Grid3D;

- _worldSize:number

- _blockSize:number

- _gridColornumber

- _voxelWorld:Voxel.VoxelWorld:

- _controllerSphereSegments:number;
- _controllerSphereRadius:number;

- _nodeSize:number;

- _nodeVelocity THREE.Vector3;

- _nodeMass:number;
-_project:-THREE.Projector;

- _offset THREE . Vectar3;

- _SELECTED:any;

- INTERSECTED:any;

- _springs:Array<Geomelry.Spring>;
_cursorTracker:-number

- _cursorLviTracker:number

- _cursorDebugger,THREE.Mesh;

- _demoSphereCenter1: THREE.Vector3
- _runDemo:boolean = false;

- _demoSphereRadius:number

- _demoSphereAdd:number

- _phongMaterial:THREE.MeshPhongMaterial;
- _IblVisibility:boolean

- _horizontallmagesDivID: string = 'horizontal';
- _verticallmagesDivID: string = 'vertical';

- _arrayOfVisualRaylines: Array<THREE Line>;

- _arrayOfHorizontalSlices:Array<imaging.|HorizontallmageSlice>;
- _arrayOfVerticalSlices:Array<imaging.|VerticallmageSlice>;

- _canvasRender: Imaging.CanvasRender;

- info:any;

- _renderGridOnSlicelmages:boolean = true;

- _verticalSlice: number = 0;

- _horizontalLines: Geometry.Collection<Geometry.ILine>;

- _verticalLines : Geometry.Collection<Geometry.ILine>;

+ constructor()

- initialise()void

- initialiseCamera():void

- initialiseSpotLighting(distance:number, pointcolor:number):void
+updateGridColor(val:string):void

- animate() : void

- update() : void

- onNodeSelect(e : MouseEvent) : void

- nodeDrag(e : MouseEvent) : void

- nodeRelease (e : MouseEvent) : void

+ MoveCursor() : void

+createHelperLabels(voxel : Voxel.VoxelState2) : void
+ toggleGrid() : void

+toggleMesh() : void

+ toggleVolumeVisibility() : void

+ procedurallyGenerateSphere() : void

+ procedurallyGenerateSmallerinvertedSphere() : void
+joinNodes() : void

+connectNode(node : Geometry. Node, v1 : THREE Vector3, v2 : THREE Vector3) :
void

- onMessageRecieved(e.MessageEvent) : void

+ clearOldData() : void

+ takeHorizontallmageSlice() : void

+ takeVerticallmageSlice() : void

+ drawAllSampledData(): void

Page

125

D

9

T ICommand

ToggleGridCommand
- _stackRender: StackRender

+ constructor(stackRender : StackRenderer)
+ execute() : void

Imageitem

+SIC : any
+ caption : any

+ constructor(src : any, caption : any)

StackRenderer

+ GlobalControlsEnabled : boolean

+ Worker : any

- _controlSphere : Controller.ControlSphere
- _controlSphere : Gontroller.ControiSphere
= _gui: GUIUTILS.GUI

- _renderingElement : any;

- _camera : THREE.PerspectiveCamera

- _cameraControls : any

- _renderer: THREE.WebGLRenderer

- _scene : THREE.Scene

- _clock : THREE.Clock

- _stats : any

- _screenWidth : number

- _screenHeight : number

- _grid : Geometry.Grid3D

- _worldSize : number

- _blockSize : number

- _gridColor : number

- _voxelWorld : Voxel.VoxelWorld

- _phongMaterial : THREE.MeshPhongMaterial
- _IblVisibility : boolean

+info : any

+ Imageltems : any

+ constructor(gui : GUIUTILS.GUI)

lise{) : void

liseCamera() : void

- InitialiseSpotLighting (distance : number, pointcolor : number) : void
+ updateGridColor(val : string) : void

- animate() : void

- update() : void

+ toggleGrid() : void

+ toggleMesh() : void

+ regenerateWithNewT hreshold() : void

+ loadDatalmages(images : string) : void

+ dataTypeSelectionChange(selection : string) : void
- onMessageRecieved(e : MessageEvent) : void

- setMesh(data : any) : void

Page 126

14.2 Libraries used in the development for this Thesis
Some of these licenses have moved to MIT licensing since (more liberal) but we may not be using the

latest and will state the license of the used library.

Library Source Purpose License
Three JS Author: Richardo Cabello A library that abstracts MIT
Now hosted on GitHub as WebGL calls to a higher and
community project. more user friendly level.
JQuery and http://jquery.com/ Description from the main MIT
JQueryUl site:
“jQuery is a fast, small, and
feature-rich JavaScript
library. It makes things like
HTML document traversal
and manipulation, event
handling, animation, and
Ajax much simpler with an
easy-to-use API that works
across a multitude of
browsers.”
Bootstrap (js | http://getbootstrap.com/ Site description — “The most | Apache
and css) popular front-end License,
framework for developing Version 2.0
responsive, mobile first
projects on the web.”
dat.gui.js Google Data Arts Team Out of the box controller Apache
https://github.com/dataarts/dat.gui | gui/menu for JavaScript License,
Version 2.0
dectector.js alteredq -http://alteredqualia.com Detects if WebGL is available | MIT
mr.doob - http://mrdoob.com/ in this browser and alerts the
user to update their browser
Packaged as part of the Three.js or fix it if it is not.
download
Knockout http://knockoutjs.com/ Allows for associating DOM MIT
elements with JavaScript
model data. l.e. updates to
model data will be reflected
in the Ul
MCData.js Multiple — see notice in file Look up tables NA
Orbitcontrols | giao / https://github.com/giao Packaged as part of three.js | MIT
js mrdoob / http://mrdoob.com download it provides a
alteredq / http://alteredqualia.com/ | library for various camera
WestLangley / controls
http://github.com/WestLangley
erich666 / http://erichaines.com
Pick-a- Lauren Sperber and Broadstreet Ads | Color selector MIT
color.js https://github.com/lauren/pick-a-

color

Page 127

Qunit https://qunitjs.com/ Test framework MIT
stats.js Mr Doob, this is packaged with Display FPS in the GUI MIT
THREE.JS
threeoctree.j | Collinhover Repository description — MIT
s https://github.com/collinhover/thre | “(sparse + dynamic) 3D
eoctree spatial representation
structure for fast searches”
tinycolor https://github.com/bgrins/TinyColo | “Fast, small color MIT
r manipulation and conversion
for JavaScript
http://bgrins.github.com/Tin
yColor/”
Underscore.js | Jeremy Ashkenas, DocumentCloud Provides functions such as MIT

and Investigative Reporters &
Editors

http://underscorejs.org

map, filter and reduce

Page 128

Works Cited

Anyuru, A. (2012). Professional WebGL Programming : Developing 3D Graphics for the Web.
Somerset, NJ, USA: Wiley.

Autodesk. (2013, October 20). Digital sculpting and digital painting software. Retrieved from
Autodesk: http://www.autodesk.com/products/mudbox/overview

Bidelman, E. (2010, July 26). The Basics of Web Workers. Retrieved from HTML5 Rocks:
http://www.html5rocks.com/en/tutorials/workers/basics/

Blender Foundation. (2013, October 20). Features. Retrieved from Blender:
http://www.blender.org/features-gallery/features/

Blender Foundation. (2013, July). History. Retrieved from Blender.org:
http://www.blender.org/foundation/history/

Blender.org. (2013, February 20). Blender 2.66: Dynamic Topology Sculpting. Retrieved from Blender
Wiki:
http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.66/Dynamic_Topology_Sculpti
ng

Borland, D., & Taylor, R. (2007). Rainbow Color Map (Still) Considered Harmful. Computer Graphics
and Applications, 27(2), 14-17.

Boulos, S., Edwards, D., Lacewell, D. J., Kniss, J., Kautz, J., Shirley, P., & Wald, I. (2007). Packet-based
Whitted and Distribution Ray Tracing. Proceedings of Graphics Interface 2007 (pp. 177-184).
New York, NY, USA: ACM.

Bourke, P. (1994, May -). Polygonising a scalar field. Retrieved November 13, 2013, from Paul
Bourke: http://paulbourke.net/geometry/polygonise/

Bridge, H. (2010, March 18). Introducing the ANGLE Project. Retrieved from The Chromium Blog:
http://blog.chromium.org/2010/03/introducing-angle-project.html

Calhoun BFA, P. S., Kuszyk MD, B. S., Heath PhD, D. G., Carley BS, J. C., & Fishman MD, E. K. (1999).
Three-dimensional volume rendering of Spiral CT data: Theory and Method. RadioGraphics,
745-764.

Collingridge, P. (2011, July 25). Specific attraction: springs. Retrieved from Petercollingridge.co.uk:
http://www.petercollingridge.co.uk/pygame-physics-simulation/specific-attraction-springs

Crawfis, R., Xue, D., & Zhang, C. (2005). 8 - Volume Rendering Using Splatting In Visualisation
Handbook. (C. D. Hansen, & C. R. Johnson, Eds.) Burlington: Butterworth-Heinemann.

Cripe, B. E., & Gaskins, T. A. (1998). The DirectModel Toolkit: Meeting the 3D Graphics Needs of
Technical Applications. HEWLETT PACKARD JOURNAL 49, 19-27.

Page 129

Cui, J., Chow, Y. W., & Zhang, M. (2011). A Voxel-based Octree Construction Approach for
Procedural. IJCSNS International Journal of Computer Science and Network Security, 160-168.

Dewaele, G., & Cani, M.-P. (2004). Interactive global and local deformations for virtual clay.
Computer Models, 66(6), 352-369.

Echterhoff, J. (2014, April 29). On the future of Web publishing in Unity. Retrieved from Unity3D:
http://blogs.unity3d.com/2014/04/29/on-the-future-of-web-publishing-in-unity/

Flanagan, D. (2011). JavaScript : The definitive guide. 1005 Gravenstein Highway North, Sebastopol,
CA 95472.: O'Reilly.

Forshaw, J., Stone, P., & Jordon, M. (2011, June 16). WEBGL — MORE WEBGL SECURITY FLAWS.
Retrieved from Context- Information Security:
http://www.contextis.com/research/blog/webgl-more-webgl-security-flaws/

Galyean, T. A., & Hughes, J. F. (1991). Sculpting: An Interactive Volumetric Modeling Technique.
Computer Graphics, 25(4), 267-274.

Haines, E., & Akenine-Mobller, T. (2002). Real-Time Rendering. Natick, MA, USA: AK Peters / CRC
Press.

Hess, R. (2010). Blender Foundations: The Essential Guide to Learning Blender 2.6. Burlington, MA:
Elsevier.

Hughes-Croucher, T., & Wilson, M. (2012). Node : Up and Running. O'Reilly.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing In Science & Engineering, 90-
95.

Kaufman, A., & Mueller, K. (2003). Volume Visualization and Volume Graphics. Kaufman, A., &
Mueller, K. (2003). Volume visualization and volume graphics. Stony Brook University, Stony
Brook, 10-15., 2.

Kaufman, A., Cohen, D., & Yagel, R. (1993). Volume graphics. Computer, vol.26, no.7, 51-64.

Khronos. (2013, October 15). OpenGL ES 2.0 for the Web. Retrieved from Khronos Group:
http://www.khronos.org/webgl/

Khronos Group. (n.d.). WebGL/Security. Retrieved from Khronos Group:
http://www.khronos.org/webgl/security/

Koten, J. (2013, June 10). A Revolution in the Making. Retrieved from The Wall Street Journal:
http://online.wsj.com/news/articles/SB10001424127887324063304578522812684722382

Kurachi, N. (2011). The magic of computer graphics. Boca Raton, FL: CRC Press.

Lacroute, P. G. (1995). Fast Volume Rendering Using A Shear-Warp Factorization Of The Viewing
Transformation. Stanford, CA: Stanford University.

Page 130

Laine, S., & Karras, T. (2010). Efficient Sparse Voxel Octrees -- Analysis, Extensions, and
Implementation. NVIDIA Corporation.

Lorensen, W. E., & Cline, H. E. (1987, July). Marching Cubes: A hige resolution 3D surface
construction algorithm. Computer Graphics, 21(4), 163-169.

Magnusson, M., Lenz, R., & Per-Erik, D. (1991). Evaluation of methods for shaded surface display of
CT volumes. Computerized medical imaging and graphics 15.4, 247-256.

Matsuda, K., & Lea, R. (2013). WebGL Programming Guide - Interactive 3D graphics programming
with WebGL. New Jersey 07458: Pearson Education.

Meagher, D. (1982). Geometric modelling using octree encoding. Computer Graphics and Image
Processing, 19(2), 129-147.

Microsoft. (2014, April). TypeScript - Language Specification V1.0. Retrieved from TypeScript Lang:
http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf

Mozilla Developer Network. (2014, March 28). HTTP access control (CORS). Retrieved from MDN
Mozilla Developer Network:
https://developer.mozilla.org/en/docs/HTTP/Access_control_CORS

Mozilla Developer Network. (2014, April 18). Introduction to Object-Oriented JavaScript. Retrieved
from Mozilla Developer Network: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

Mozilla Developer Network. (2014, April 2). Using web workers. Retrieved from MDN Mozilla
Developer Network: https://developer.mozilla.org/en-
US/docs/Web/Guide/Performance/Using_web_workers

MSDN. (2013, November 12). WebGL. Retrieved from MSDN: http://msdn.microsoft.com/en-
us/library/ie/bg182648(v=vs.85).aspx

Pavone, P., Luccichenti, G., & Cademartiri, F. (2001). From maximum intensity projection to volume
rendering. Seminars in Ultrasound, CT and MRI, Volume 22, Issue 5, 413-419.

Pawasauskas, J. (1997, February 18). Volume Visualization With Ray Casting. Retrieved from
Worcester Polytechnic Institute:
http://web.cs.wpi.edu/~matt/courses/cs563/talks/powwie/p1/ray-cast.htm

QuakeCon2011. (2012, August 3). QuakeCon 2012 - John Carmack Keynote. Retrieved from YouTube:
https://www.youtube.com/watch?v=wt-iVFxgFWk

Rousset, D. (N.D). Introduction to HTML5 Web Workers: The JavaScript Multi-threading Approach.
Retrieved from MSDN Microsoft Developer Network: http://msdn.microsoft.com/en-
us/hh549259.aspx

Page 131

Salama, C. R. (2006). Real-Time Volume Graphics: Introduction. Eurographics 2006 Tutorial Notes T7
(pp. 1-22). The Eurographics Association.

Sato PhD, Y., Shiraga MD, N., Nakajima MD PhD, S., Tamura PhD, S., & Kikinis MD, R. (1998,
November/December). Local Maximum Intensity Projection (LMIP): A new rendering
method for vascular visualisation. Journal of Computer Assisted Tomography, 22(6), 912-917.

Schroeder, W. J., & Martin, K. M. (2005). Overview of Visualisation in The Visualization Handbook. (C.
D. Hansen, & C. R. Johnson, Eds.) Burlingtion: Butterworth-Heinemann.

Sellers, G., Wright Jr, R. S., & Haemael, N. (2013). OpenGL SuperBible (6th edition). New Jersey:
Addision Wesley.

Siegel, M. J. (2008). Pediatric Body CT. Philadelphia: Lippincott Williams & Wilkins, 2008.

Spiess, P. (2010, February 23). Better know an algorithm 1: Marching Squares. Retrieved from Phill
Spiess (Blog): http://devblog.phillipspiess.com/2010/02/23/better-know-an-algorithm-1-
marching-squares/

Stemkoski, L. (2013, August 23). Marching Cubes. Retrieved from stemkoski.github.io:
http://stemkoski.github.io/Three.js/Marching-Cubes.html

Stytz, M. R., Frieder, G., & and Frieder, O. (1991). Three--dimensional medical imaging: Algorithms
and computer systems. L.C. Smith College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects. Paper 6.

User: Jonathan @ stackoverflow.com. (2010, November 2). procedurally generate a sphere mesh.
Retrieved from http://stackoverflow.com/: http://stackoverflow.com/a/4082020

Wang, S. W., & Kaufman, A. E. (1995). Volume Sculpting. Proceedings of the 1995 Symposium on
Interactive 3D Graphics (pp. 151-ff). Monterey, California, USA: ACM.

wiki.blender.org. (2013, July 8). Sculpt Mode. Retrieved from wiki.blender.org:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Modeling/Meshes/Editing/Sculpt_Mode

WikiBooks.org. (2013, September 24). Blender 3D: Noob to Pro/Box Modeling. Retrieved from
WikiBooks.org: Blender Noob to Pro:
http://en.wikibooks.org/wiki/Blender_3D: Noob_to Pro/Box_Modeling

Wilhelms, J., & Van Gelder, A. (1992). Octrees for faster isosurface generation. ACM Transactions on
Graphics, 11(3), 201-207.

Wunsche, B. (1999, April). The visualisation of 3d stress and strain tensor fields. Proceedings of the
3rd New Zealand Computer Science Research Student Conference, 109-116.

Page 132

